歐盟執委會(European Commission)於2023年10月3日公布「關於歐盟經濟安全關鍵技術領域之建議」(Recommendation on Critical Technology Areas for the EU’s Economic Security),以便與各會員國進行經濟安全關鍵技術之風險評估。該建議源自於歐盟於6月發布之「歐盟經濟安全戰略」(European Economic Security Strategy)目的在於地緣政治緊張之局勢下,將最大限度的減少經濟流動所帶來之風險,為歐盟經濟安全制定全面的戰略方針。此「建議」列出十大關鍵技術領域的清單,係根據以下標準進行風險評估:
(1)技術是有促成及轉型之本質(Enabling and Transformative Nature of the Technology)。
(2)民用與軍用融合技術之風險(The Risk of Civil and Military Fusion)。
(3)科技可能被用於侵害人權之風險(The Risk the Technology Could Be Used in Violation of Human rights)。
根據上述標準所列出十個關鍵技術領域後,其中有四個領域項目被認定是最敏感之技術領域,分別有半導體、人工智慧技術、量子技術及生物技術四大類別。
歐盟積極制定此計畫,以確保先進技術不落入敵國手中,減少對於如中國等國家單一供應商之依賴;歐盟預計於今年年底與會員國進行廣泛的風險評估,以確保下一步可能所採取的措施,可能包含出口管制及對外之審查投資,預計於2024年初提案。
本文為「經濟部產業技術司科技專案成果」
英國資訊委員辦公室(Information Commissioner's Office, ICO)2018年9月就監理沙盒為初步公眾意見徵詢,以瞭解其可行性。ICO監理沙盒之建立係依據英國2018-2021年科技策略(Technology Strategy for 2018-2021),並參考英國金融行為監理總署(Financial Conduct Authority, FCA)已成功發展之沙盒機制。ICO將提供組織於安全可控且不排除資料保護法規適用的環境下,以創新方式應用個資於開發創新產品與服務,並提供關於降低風險與資料保護設計(data protection by design)的專業知識和建議,同時確保組織採取適當安全維護措施。徵詢重點分為六部分: 障礙和挑戰(Barriers and Challenges):歐盟一般資料保護規則(General Data Protection Regulation, GDPR)或英國2018年資料保護法(Data Protection Act 2018, DPA18)之適用,以及ICO之監管方法,是否造成組織以創新方式應用個資於開發創新產品與服務之障礙或挑戰。 適用之可能範圍(Possible scope of an ICO Sandbox) 了解參與益處(Understanding the benefits of involvement) 機制(Sandbox mechanisms):於監理沙盒機制下不同階段提供指導,初期就如何解決資料保護相關問題提供非正式之指導(informal steers);中期提供法律允許與具適當保護措施之監管指導,如對參與者進入沙盒期間內非故意違反資料保護原則之行為,不會立即受到制裁之聲明函(letters of comfort)、確認組織未違反相關資料保護法規等;以及針對新興技術和創新特定領域,提供解決資料保護挑戰之預期指導(anticipatory guidance),如訂定相關行為準則(code of conduct)。 時機(Sandbox timings):包含開放申請進入沙盒時點、進入模式、是否彈性因應產品開發週期、測試階段期間等。 管理需求(Managing Demand):如設定優先進入沙盒領域、類型、設定參與者數量上限等。 該諮詢於10月12日結束,2018年底將公布結果,值得持續追蹤,以瞭解ICO監理沙盒未來之發展。 ICO亦接續於10月建立監管機關業務和隱私創新中心(Regulators’Business and Privacy Innovation Hub),與其他監管機關合作提供資料保護之專業知識,以確保法規與未來的技術同步發展;該中心也將與ICO監理沙盒共同推動,支持組織以不同方式使用個資開發創新產品和服務。
美國能源部加強推動智慧電網之網路安全,並提供自我評估調查工具美國能源部於今年(2012)6月28日發布一套新的網路安全自我評估調查工具(Cybersecurity Self-Evaluation Survey Tool),以強化保護公共事業的業者避免遭受網路安全的攻擊,這套工具也是能源部為施行其於5月31日公布的網路安全能力成熟度模型(Cybersecurity Capability Maturity Model)的一部分,同時此模型的發展也是為了支持白宮的電力網路安全風險管理成熟度倡議( Electricity Subsector Cybersecurity Risk Management Maturity Initiative)。 網路安全成熟度模型的發展乃係由能源部與國土安全部共同領導,並且與業界、其他聯邦機構以及卡內基大學軟體工程研究所合作進行,該模型的四個目標在於:加強電力網路安全能力、使相關業者可以有效並持續設立網路安全能力的基準、分享知識、解決的方法與其他相關的參考資料、使業者得以排定對於改善網路安全的行動以及投資上的優先順序,以幫助業者發展並且評估他們的網路安全能力。 此次發佈的評估工具則是以問卷的方式,著重在情境式的認知與威脅及弱點的管理,而後能源部將針對自願提供評估結果的業者提供個案報告,幫助業者改善其網路安全能力,同時,能源部也建議業者,建立優先行動方案,以解決差距的問題,並且定期評估追蹤網路安全能力的改善進度,能源部也提醒業者注意網路威脅環境上與技術上的改變,以進行應變的評估。
Google的下一步:行動廣告市場美國網路搜尋龍頭Google於2009年11月提出一項以7億5千萬美金收購行動廣告網絡商ADMob的計畫,大張旗鼓地準備涉足這個目前於所有廣告型態中,規模相對微小的區域。然而,美國二大消費者團體Consumer Watchdog及Center for Digital Democracy卻不認同這項收購計畫,甚至認為Google此舉將使其於行動廣告市場中形成獨占,以及甚有侵害消費者隱私權的可能,從而向聯邦交易委員會(Federal Trade Commission, FTC)喊話,要求FTC阻止Google此次的商業併購行為。 然而,消費者團體的擔憂亦非毫無道理,蓋Google在網路搜尋與線上廣告均有難以撼動的地位,而ADMob目前在行動廣告市場之佔有率亦為前茅,是故兩者一旦合併,消費者團體認為,Google此舉即是在為自己日後於此一極具發展潛力的市場中,先行買下一席位子。此外,由於GPS技術的發達,Google附加的Google Map定址應用更有可能因其實質跨足提供行動服務而有侵害使用人隱私權的可能。 雖言如此,FTC仍未明確表示對該項交易的意見,此外,無獨有偶地,蘋果電腦對行動廣告的市場亦開始有所行動,根據另一行動廣告服務提供者Quattro Wireless指出,蘋果公司正在計畫其中的細節。由此可見,不論FTC最後的結論為何,資訊業者之於行動廣告的戰爭已經開始。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。