日本內閣府召集研究小組 解決因AI帶來之智財問題

日本內閣府組成「AI時代的智慧財產權研討小組」,由東京大學副校長渡邊敏也作為主席於今(2023)年10月4日召開首次會議,為討論生成式AI(人工智慧)發展帶來的智慧財產權問題。討論主題包括法規範現況、在人類參與有限的情況下由生成式AI所產出之發明是否可以申請專利等,目標於年底前彙整、蒐集企業經營者待解決議題。亦將從其他法律的角度進行討論,例如:AI模仿商品形態是否亦受到日本《不正競爭防止法》之拘束;AI與專利之間的關係,依據日本《專利法》,專利權目前僅授予個人參與創造過程的發明,隨著AI技術的發展,預計會出現難以做出決策的情況,將討論諸如取得專利所須的人類參與程度等問題;以及擁有大量資料的權利持有者向AI開發者提供有償資料的優缺點。與會專家表示,希冀看到從鼓勵利用AI進行新創作和發明之角度出發。日本文化廳和其他相關組織亦同步討論AI生成的作品,若與現有之受著作權保護的作品相似時是否會侵害著作權之議題。

日本內閣府早先於今年5月公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理),我國行政院於今年8月31日正式揭示國科會擬定之「行政院及所屬機關(構)使用生成式AI參考指引」草案,我國經濟部智慧局亦規劃研擬就AI生成物是否享有著作權或專利權、訓練資料合理使用範圍、企業強化營業秘密保護等3大面向建立AI指引,國內外AI相關指引議題均值得持續追蹤瞭解。另,企業無論是擔憂AI技術成果外洩、不慎侵害他人智財權或智財成果被生成式AI侵害之虞等,因應數位化趨勢與數位證據保全而應強化相關管理措施,資策會科法所發布之《營業秘密保護管理規範》、《重要數位資料治理暨管理制度規範(EDGS)》協助企業檢視自身管理措施之符合性並促進有效的落實管理。

本文同步刊登於TIPS網(https://www.tips.org.tw

相關連結
你可能會想參加
※ 日本內閣府召集研究小組 解決因AI帶來之智財問題, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9091&no=55&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

美國參議院通過《2021美國創新暨競爭法案》 眾議院通過《美國國家科學基金會未來法案》

  美國參議院於2021年6月8日通過《2021年美國創新暨競爭法案》(the United States Innovation and Competition Act of 2021, USICA),是一項重大支出的全面性法案,批准了2500億美元於未來五年投入科學研究,旨在提振美國科技研發核心能力,並藉此因應中國的挑戰。   該法案分為六大部分: 《晶片製造法與5G等無線技術應用》(CHIPS Act and ORAN 5G Emergency Appropriations) 《無盡邊疆法》(Endless Frontier Act) 《2021戰略競爭法》(Strategic Competition Act of 2021) 《國土安全與政府事務委員會相關條款》(Homeland Security and Government Affairs Committee Provisions) 《2021回應中國挑戰法》(Meeting the China Challenge Act of 2021) 其他(如:教育與醫學研究競爭力與安全、司法委員會)。   其內容包括提撥520億美元支援半導體產業、15億美元支援5G供應鏈生產與技術研發,同時防範關鍵技術外洩,並透過與國內外民間、外國政府合作推動半導體、人工智慧、通訊、能源與生物技術等領域的基礎研究與創新,提供多種獎勵措施。   同月28日眾議院則提出自己版本以取代USICA並加以通過,分別是《美國國家科學基金會未來法案》(National Science Foundation for the Future Act)以及《美國能源部未來科學法案》(Department of Energy Science for the Future Act),預計在未來五年撥款1280億美元,供美國國家科學基金會(NSF)與能源部(DOE)提升研發能力。   參眾兩院意見分歧而需再展開協商,預計於今年9至10月間於兩院協商委員會通過。

何謂「智慧機械」

  智慧機械產業為目前我國五大創新產業政策之一,主要目的是將臺灣從精密機械升級為智慧機械,爰此,行政院於105年7月核定「智慧機械產業推動方案」,整合我國豐沛的新創能量,建立符合市場需求之技術應用與服務能量,以創造我國機械產業下一波成長新動能。   智慧機械之定義係指整合各種智慧技術元素,使其具備故障預測、精度補償、自動參數設定與自動排程等智慧化功能,並具備提供Total Solution及建立差異化競爭優勢之功能;智慧機械的範疇包含建立設備整機、零組件、機器人、智慧聯網、巨量資料、3D列印、網實融合CPS、感測器等產業。而智慧製造係指產業導入智慧機械,建構智慧生產線(具高效率、高品質、高彈性特徵),透過雲端及網路與消費者快速連結,提供大量客製化之產品,形成聯網製造服務體系。   未來我國智慧機械與智慧製造領域仍待研發突破之項目有:工業用等級之視覺/觸覺/力感知等感測模組與驅動控制技術;微型感測元件智慧化;開放性標準網路通訊技術;機器型通訊及安全技術;耐延遲及低耗能機器聯網;健全人機智能介面,提升人機協同安全與效率;智慧聯網共通服務平台、資料分析與效能管理;網實融合智能系統需結合專業分析模型提升準確性及可靠度;機器人智慧整合能力及反應速度;供需產能整合與決策系統等等。

日本對未來2020年至2030年間網路基礎設施之預測

  日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。   在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。   物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。   人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。   由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。

TOP