世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:

(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。

(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。

(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。

(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。

(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。

(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9093&no=67&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
科法觀點
你可能還會想看
英國Ofcom「個資與隱私」報告

  針對告知消費者個資使用方式以及確保消費者對個資利用之參與及意見表達,英國通訊傳播管理局(The Office of Communications, Ofcom)於2015年6月17日公布委託德國顧問公司WIK-Consult進行之「個資與隱私」(Personal Data and Privacy)報告。報告指出,雖然法規要求在處理個資前必須獲取相關消費者的告知同意,但事實是消費者並未在線上實際閱讀隱私權政策條款,這個問題則由於智慧聯網大幅促進了裝置間的互聯性與資料的流通而更形嚴重。報告表示,雖然資料流通的本質不變,但僅因互聯裝置數量倍增就足以讓可近用與分析的資料呈等比級數成長,要在線上對這些遍及生活各層面的資料進行追蹤也就難上加難。   對於這個起因於智慧聯網興起的問題,報告認為政府可能必須利用更複雜的契約關係加以規範。因為隱私權政策要能透明,必須指出究竟是哪些人會在何時以哪種方式為了何等目的去近用相關資料,但這勢必會讓隱私權政策條款更加冗長,這不但與隱私權政策盡可能應簡潔易懂相違,消費者也更不可能實際去閱讀。此外報告也指出,機台或裝置在智慧聯網下能夠在幾乎沒有人為介入的情況下進行溝通,此將大幅壓縮消費者能夠得知個資蒐集與使用方式的機會,智慧聯網也讓消費者可能根本沒有察覺其正在使用的裝置實際上已經與網路連線。另一方面,隨著互聯複雜性的大幅提高,有意或無意揭露個資也將帶來更多的潛在不利影響。

基因資訊醫療應用與被害人承諾

英國資料倫理與創新中心提出「議題速覽-深度偽造與視聽假訊息」報告

  英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。

加拿大隱私專員呼籲提升加拿大人在美國之隱私保護

  加拿大隱私專員表示,其國人在美國雖享有一些隱私保護,但該保護主要係依賴不具法律效力之行政協議,因而相當脆弱。   隱私專員Daniel Therrien在一封致加拿大司法部長、公共安全部長及國防部長的公開信中,請求加拿大政府官員們向其對口之美國政府部門,要求藉由將加拿大列入美國國會去(2016)年通過之「司法賠償法案(Judicial Redress Act of 2015)」指定國家清單,以強化對其國人之隱私保護。隱私專員並表示,國人關切並請加拿大隱私專員辦公室(OPC)針對美國總統唐納.川普(Donald John Trump)所發布之行政命令進行影響評估,因其將排除非美國公民及合法永久居民隱私權法中關於個人可資識別資料之保護。   倘若加拿大能如同歐洲聯盟(European Union)及26個歐洲國家一般,於今年初時被列入前述指定清單,則其公民即可透過美國法院之強制執行,獲得隱私保障。此外亦可同時強化行政協議,如:美加邊境安全行動計劃(Canada-U.S. Beyond the Border Action Plan)及其聯合隱私聲明原則(Joint Statement of Privacy Principles)給予加拿大人之保護。   聯合隱私聲明原則涵括12項,其重要者有: 1.善盡一切合理努力,確保個人資料之正確性,以及後續請求查閱及更正錯誤之權利。 2.個人資料適當安全維護措施。 3.蒐集個人資料之相關性及必要性。 4.當事人認為其隱私受侵害時,得受繼有國家當局之賠償。 5.公務機關之有效監督。   縱算美國隱私權法自始即從未適用於加拿大人,且前開行政命令亦未改變現況,該命令仍突顯出「在南邊境上對加拿大人個人資料保護的顯著差距」。 「作為一個長期盟友以及密切的貿易夥伴,加拿大應要求被給予和那些經指定列入清單之歐洲國家相同程度之保護。」

TOP