世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料處理篇,主要為促使企業理解有利活用於數位技術與服務的資料管理方法。 《指南》資料處理篇指出,資料的生命週期涵蓋資料設計、資料蒐集、外部資料連動、資料整合、資料處理、資料提供、資料累積以及資料銷毀等不同階段。《指南》建議在資料生命週期的各階段,盡可能的不要有人類的介入。舉例而言,資料蒐集可以透過感測器或系統進行。該建議的目的在於,人類介入資料生命週期,僅會引起輸入錯誤或是操作錯誤等風險。 此外,《指南》亦於資料處理篇中針對資料治理給出四點建議,分別如下: (一)資料是企業的重要資產,因此應重視其管理方式。管理方式涵蓋帳號密碼、透過生物辨識技術進行資料接觸管理、Log檔之取得、系統設定禁止使用USB等方式。 (二)資料治理的重點在於對人政策。除了向員工強調不要開啟不明網站及釣魚信件以外,企業亦應與員工建立堅實的信賴關係。 (三)資料公開或流通時應注意,如果不希望提供後的資料被二次利用,應於雙方間的資料利用契約中敘明。此外,由於資料具備易於複製及傳輸的特性,因此在公開或流通資料時,應考量適用諸如時戳技術等可確保資料原本性或使資料無法被竄改的數位技術。 (四)資料銷毀如果僅是單純的刪除資料,有透過數位技術找回資料的可能性。因此,除可評估委由專門進行資料銷毀服務的公司協助以外,由於銷毀資料經由個人電腦外洩之事件時有所聞,故亦應留意個人電腦之資料管理。 我國企業如欲將資料活用於數位技術或服務,除可參考日本所發布之《指南》資料處理篇以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,以建立自身資料處理流程,進而強化資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟啟用半導體供應鏈示警系統,監測各成員國半導體供應鏈狀況歐盟執委會(European Commission, EC)於2023年5月10日宣布啟用《歐盟晶片法案》(EU Chips Act)三支柱之一的半導體供應鏈示警系統(Semiconductor Alert System),其目的在於監測半導體供應鏈短缺之問題。 根據《歐盟晶片法案》,歐盟各成員國的半導體供應鏈主管機關須定期執行半導體供應鏈的觀測任務,以隨時確認半導體供應鏈之狀況。然而,由於歐盟係由眾多不同的國家所組成,各成員國間訊息的流通相比於其他單一國家可能較為緩慢,故EC決定創建半導體供應鏈示警系統,交換半導體供應鏈資訊以解決上述問題。在此系統中,私人企業得單獨對所處產業中的早期半導體短缺進行回報,惟個別產業常常單獨誇大或高估危機的發生可能性,對此,EC成立了歐盟半導體專家小組(European Semiconductor Expert Group, ESEG),協助收集各半導體產業與成員國所回報之訊息,除將其用於建立風險評估外,亦彙整並分析成有價值的資訊後再分享給各成員國。 若資訊收集完成後,ESEG或EC察覺歐盟確實有發生半導體供應鏈崩潰的危險,EC將召開特別委員會會議(extraordinary board meeting),共同尋求解決方案,包含聯合政府採購(joint procurement),或與第三國進行合作,以合力解決半導體供應鏈之危機。
日本自動駕駛損害賠償責任研究會報告為釐清自駕車事故發生時,該如何適用日本《汽車賠償法》相關規定,國土交通省於2016年11月設置「自動駕駛損害賠償責任研究會」,檢討︰(1)自動駕駛是否適用《汽車賠償法》上運用供用者概念?(2)汽車製造商在自動駕駛事故損害中應負何種責任?(3)因資料謬誤、通訊不良、被駭等原因導致事故發生時應如何處理?(4)利用自動駕駛系統時發生之自損事故,是否屬於《汽車賠償法》保護範圍等議題,並於2018年3月公布研究報告。針對上述各點,研究會認為目前仍宜維持現行法上「運行供用者」責任,由具有支配行駛地位及行駛利益者負損害賠償責任,故自駕車製造商或因系統被駭導致失去以及支配行駛之地位及行駛利益者,不負運行供用者責任。此外,研究報告亦指出,從《汽車賠償法》立法意旨在於保護和汽車行駛無關之被害者,以及迅速使被害者得到救濟觀之,自動駕駛系統下之自損事故,應仍為《汽車賠償法》保護範圍所及。
歐盟法院佐審官允許Google販售商標關鍵字給廣告業者針對法國知名品牌LVMH控告搜尋引擎大廠Google以其商標作為關鍵字,販售給網路廣告業者,使得當使用者鍵入商標關鍵字搜尋時,廣告業者之商業訊息及其網址會呈現在搜尋結果中,而侵害LVMH商標權的訴訟案中,歐洲法院佐審官(advocate General)Poiares Maduro提出了法律意見書。 在該意見書中,其認為Google允許廣告業者選擇和商標有關的關鍵字並不構成商標侵權,選擇關鍵字僅是Google和廣告業者二造間的內部活動,並沒有對公眾販賣和商標相同或類似的產品或服務,非商標法所謂之使用。另外,根據關鍵字搜尋結果而呈現廣告業者之網址,也不會造成消費者對原始產品或服務混淆的風險。網際網路的使用者知道在Google搜尋引擎做搜尋時,並非只有商標擁有者的網址會呈現,甚至有時他們並不是尋找商標擁有者的網址。消費者會依據廣告內容及造訪廣告網址來認定產品或服務的來源,不是僅依據隨商標關鍵字而呈現出的廣告就作出來源的認定。 該佐審官的法律意見雖然對歐盟法院沒有拘束力,但該法院在大部分的案件中仍會依循該意見,通常在該意見提出後大約六個月會作出裁判。