世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:

(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。

(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。

(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。

(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。

(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。

(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9093&no=67&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
科法觀點
你可能還會想看
何謂拜杜法案「Bayh-Dole Act」?

  美國國會於1980年通過了拜杜法案(Bayh-Dole Act),正式名稱為1980年大學與小型企業專利程序法(University and Small Business Patent Procedures Act of 1980, 35 U.S.C. 200 et seq.)。經濟學人(The Economis)曾對美國拜杜法評價為「可能是過去半世紀在美國所成立之最具創見之法律」,其目的是讓大學、中小企業等與聯邦機構締約,執行聯邦政府資助的研發計畫後仍能保有其研究成果之專利,亦即將此研究成果的專利申請權歸屬於受資助之大學或中小企業,而非聯邦政府。   拜杜法案(Bayh-Dole Act) 35 U.S.C. § 201(c)對立約人(contractors)定義為,任何簽署資助協議的自然人、小型企業、或非營利機構。而權利歸屬部分,規定於35 U.S.C. § 202,非營利機構、中小企業等與聯邦機構簽訂資助契約之承攬人可以選擇是否擁有受資助發明(elect to retain title to any subject invention)之權利。再者,立約人負責專利管理事務之人員,應於知悉受資助發明的合理期間內,向聯邦機構揭露該發明,若未於合理期間內揭露,則該發明歸屬於聯邦機構。並且,立約人應於揭露發明後2年內,以書面行使其選擇權,逾期則該發明權利歸屬於聯邦機構。另 35 USC § 203有介入權規定,聯邦機構認為有必要時,得要求立約人、其受讓人或其專屬被授權人將發明專屬、部分專屬(partially exclusive)或非專屬授權予申請人,聯邦機構得自行為之。

英國劍橋大學技術移轉機制-Cambridge Enterprise Limited Company之介紹

日本空中工業革命新進展:無人機變身空中郵差

  日本政府曾於2017年6月9日閣議公布之《未來投資戰略2017》(未来投資戦略2017),以及5月19日「小型無人飛行載具相關部會連絡會議」(小型無人機に関する関係府省庁連絡会議)公布之《空中工業革命時程表》(空の産業革命に向けたロートマッフ)中,提出「2018年運用於山間地區運送貨物、2020年可正式在都市內安全運送貨物」之目標。故國土交通省與經濟產業省於同年10月4日共同設立「無人飛行載具於目視範圍外及第三者上空等飛行檢討會」(無人航空機の目視外及び第三者上空等での飛行に関する検討会),並於2018年9月18日公布《無人飛行載具運送貨物自主指引》(無人航空機による荷物配送を行う際の自主ガイドライン,以下稱「本指引」)。本指引目的係制定安全運輸貨物所應遵守事項、提高社會對無人機運送貨物之信賴,以求提升運輸效率、節省人力成本。適用對象為非屬航空法第132條規定須申請許可之空域,但於目視範圍外飛行並運送貨物之無人機。   本指引公布後,國土交通省與環境省於相關提案中選出5個人口非密集區,以進行之無人機運輸貨物(ドローン物流)實驗。首先,在2018年10月22日長野縣白馬村,無人機自海拔1500公尺處運送最重達8公斤的食品至海拔1850公尺處的山莊,單程耗時6分鐘,共往返3次,皆無發生明顯失誤。日本郵政之提案則在同年11月7日,從福島縣小高郵局成功運抵位於南方約9公里處的浪江郵局,耗時16分鐘。本次實驗係首次成功於目視範圍外運輸物品,實驗途中均未設置監看人員,僅以電腦掌握兩地衛星定位資訊,並監看無人機上搭載相機傳回的畫面。日本郵政計畫未來1年內,每個月將有6天以無人機運送2公斤內的傳單等物品。國土交通省與環境省計畫於年底前完成另外3個地區的實驗,並統整結果驗證是否能解決山間等人口非密集區,因貨物乘載率低而運輸效率低落,以及降低排碳量等課題。

美國2016年製造創新策略方案

  依2014年復甦美國製造與創新法(RAMI Act of 2014),美國國家製造創新網絡計畫於2016年2月公布策略方案(Strategic Plan)。國家製造創新網絡有四大目標:以「提升製造競爭力」為終極目標,其他三個目標分別為「促進技術轉型」、「加速製造業人力發展」、以及「確保穩定與永續之基礎建設」。在「促進技術轉型」方面,旨在促進創新技術朝向具備可適性、擁有成本效益、以及高效能之國內製造業量能的方向轉型。由於不同的製造整備度(manufacturing readiness levels)對應不同的技術整備度(technology readiness levels),且國家製造創新網絡有其設定之目標範圍,因而研發機構被預期能夠促進技術轉型的亦有差異。   行政院於民國105年7月核定通過「智慧機械產業推動方案」,透過「智機產業化」與「產業智機化」來建構智慧機械產業生態體系。智慧機械將結合半導體先進製程、精密醫療機械加工與智慧服務型機器人、以及航太與造船軍民通用技術應用,分別對應帶動亞洲矽谷、生技醫藥、以及國防等創新產業政策。透過智慧機械帶動整體產業發展,從精密走向智慧、從單機走向系統,以提高整體產業之產值

TOP