世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:

(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。

(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。

(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。

(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。

(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。

(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9093&no=67&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
科法觀點
你可能還會想看
標準必要專利與反托拉斯之成果運用法制-以高通案為例

避免昂貴訴訟成本,微軟參與專利審查團隊

  微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。   Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。   根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。   受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。   Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。

歐盟檢視「2005-2009年歐洲奈米科學與技術行動計畫」之執行成效

  歐盟執委會(European Commission)於今年9月初公佈了「『2005-2009年歐洲奈米科學與技術行動計畫』(Nanosciences and Nanotechnologies: An action plan for Europe 2005-2009)之期中執行報告」,文中總結了於2005至2007年有關該計劃重點領域執行之相關的活動及進程。   在該報告中,歐盟執委會也在報告中指出歐洲在奈米科學與技術發展上的一些弱點,包括:主要跨領域基礎設施的缺乏、私資金在奈米科技產業研發創新上的短缺(儘管「歐洲技術平台」積極鼓勵私人參與奈米科學與技術的投資,但目前私資金仍只佔全部資金之55%)、以及隨著歐盟會員國投資的增加,重複研究及分裂研究的風險也隨之增加。此外,奈米科技跨領域及創新的本質對於既有之研究、教育、專利授予及規範等方法也形成不少的挑戰。   另一方面,報告也指出歐洲在一些重點區域研究的整合相當成功;例如,在中小企業參與第六期研發綱領計畫(FP6) 中之奈米科學與技術計畫的部份,即由2003-2004年的18%成長至2006年的37%。此外,歐盟執委會也有計劃地來支持技術商業化的發展,像是競爭及創新計畫(Competitiveness and Innovation Programme)、財務風險分攤機制(Risk Sharing Financial Facility)、以及接收利用奈米技術為基礎之控制管路(pilot lines);未來,歐盟執委會計畫對負責任奈米科學與技術之研究採取自願性的行為規範。   下一份奈米科學與技術行動計畫之執行報告預計在2009年底公佈。

Apple獲得針對可攜式電子裝置之防竊系統的專利

  Apple Inc.成功取得一個防竊安全系統的專利權,該系統能簡單地藉由偵測外界環境而防止筆記型電腦、電話以及其他可攜式電子裝置遭竊。   於原始申請案中,申請人提到了許多竊案皆提供了某些非偶然的移動線索,例如快速且持續的移動。因此,藉由分析該裝置於一段期間內的移動,該防竊系統應可辨別出竊盜或合法使用者。因此,當使用者暫時離開時,他們能放心地將可攜式電子裝置留下,而不需要加裝纜線鎖或其它物理性安全裝置。   根據該專利,此防竊系統包含加速規(accelerometer)以及相對應的軟體。加速規可在某些位置或震動情況下自動傳送一訊號至該裝置核心的硬體,致使其觸發聲音或影像警報。此外,該裝置也能完全被鎖住,並且需要一組密碼使其回復到正常使用狀態。   雖然Apple很小心地避免在說明前述機制時指明特定的應用硬體,但藉由該專利說明書的描述,可以很清楚的了解Apple的構想是將該防竊系統安裝在iPod上。當然,手機以及筆記型電腦也是安裝該防竊系統的顯著標的。

TOP