世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:

(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。

(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。

(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。

(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。

(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。

(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9093&no=67&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
科法觀點
你可能還會想看
歐盟智慧財產服務台提供中小企業「掌握智慧財產權五步驟」的建議,以助其最大化IP價值

歐盟智慧財產服務台(European IP Helpdesk)於2023年7月10日提供中小企業「掌握智慧財產權五步驟」的建議,以協助中小企業最大化IP價值。五步驟如下: (1)盤點企業擁有的IP數量及排定優先順位:企業應盤點其擁有的專利、商標、設計、著作權、營業秘密等的數量,並根據IP對企業成功的重要性進行排序。 (2)進行IP查核:企業應就其所擁有的智慧財產組合(IP Portfolio)進行詳盡的檢視,以評估其優、劣勢;企業應辨別出目前其智慧財產組合所可能遭受危險的地方,並評估其目前擁有的智慧財產組合,若其中有改以其他IP保護者,則風險可能為何。 (3)制定IP保護計畫:根據上述(2)的查核結果,企業應發展出一套IP保護政策,此並應包含「可監控及執行其IP,藉以排除他人侵權行為」的情形。同時,企業也應檢視自己的IP有無侵犯到他人的權益,例如透過「自由運營分析」(Freedom-to-Operate analysis)的方式,來進行專利侵權風險排查。 (4)將保護計畫付諸行動:企業應執行上述計畫,並確保其員工係對此等政策及措施有所認知。除此之外,亦應對員工施以教育訓練,以使其知道「IP保護的重要性」及「辨別潛在侵權行為的最佳方法」。 (5)保護計畫之檢視及更新:企業應時時檢視其IP保護計畫及進行更新,以確保其整體IP策略係與企業發展目標一致。

淺談攻擊性商標

  對於商標權之內容是否涉及對特定人士的產生不快或冒犯,以及國家是否有權禁止其註冊為商標之問題,我國法係在商標法第30條第1項第7款中規定,商標妨害公共秩序或善良風俗者,不得註冊;並經由經濟部智慧財產局訂定「商標妨害公共秩序或善良風俗審查基準」,建立認定準則,並認為應「考量註冊當時之社會環境,並就其指定使用商品或服務市場之情況、相關公眾之認知等因素綜合判斷」。   而在美國法中,亦有 Lee v. Tam一案,針對美國專利商標局 (United States Patent and Trademark Office, USPTO)是否有權依照 The Lanham Act第2條a款規定駁回商標申請的權利進行爭執,該條規定「包含不道德、欺騙、誹謗性、貶損或誤導他人(不論生死)、組織、信仰或國家象徵等意涵、或導致前者名譽受損之圖案,不可註冊為商標」。   該案在2015年12月22日於美國聯邦巡迴上訴法院進行判決,法院認為,儘管是具攻擊性的歧視言論,亦受到美國聯邦憲法第一修正案所保障,故美國政府不得以商標圖案的言論內容具攻擊性為理由,拒絕商標的註冊。本案經上訴於美國聯邦最高法院,最高法院於2016年9月29日已經同意其提起上訴,將對本案進行審理。

德國經濟暨能源部召開2016年「中小企業創新核心計畫」年度會議

  德國經濟暨能源部於2016年10月27日召開2016年「中小企業創新核心計畫」年度會議,約有200位專業經理人、企業與學者共同參與討論創新產品未來在市場的趨勢、創新生產流程與技術服務,專家在會中提供許多寶貴意見。聯邦政府中小企業處代表Gleick開幕致詞時表示,中小企業的創新力量決定我們在未來的經濟成就,所以政府需要持續投資在研究與創新以及適當的補助。   經濟暨能源部以「中小企業創新核心計畫」補助中小企業、研究機構共同開發以市場為導向的研究與創新技術,透過共同合作使參與的企業更具有產業競爭優勢,此計畫於2016年提供543百萬歐元補助,日前亦通過2017年548百萬歐元補助預算。   中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。ZIM計畫中補助的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年4月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。

歐盟執委會發布關於歐洲境內資料流監控之新研究

  歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。   在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。   該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量   該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。   作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。

TOP