歐盟理事會於2023年11月27日批准通過資料法法案(Data Act),該法案雖預計於2025年才會生效,該草案自2022年公告以來,各界對該法案都紛紛從不同角度表示意見,如企業對於資料共享是否對營業秘密外流的風險表達擔憂,歐盟在發揮資料經濟價值(資料交易與資料使用)的方向下,將業界考量納入進行修改,以下就經理事會通過之資料法法案關鍵影響概要如下:
1、資料共享
有鑑於因網路裝置/服務所產出的數位資料往往掌握於產品製造商或服務提供商身上,資料法建立了資料共享的基本規則,確保數位資料由製造商/服務商流動至第三人(包含產品/服務使用者),另資料法所保護之資料包含使用AI所產生之資料。
2、營業秘密保護
為避免資料持有人的營業秘密因此外流,資料持有人可以與請求提供資料的第三人(資料請求者)協議應採取之保密措施,在保密措施未達成一致或使用者未實施保密措施,資料持有人可暫停資料共享,在有重大經濟損失之虞時甚可拒絕資料共享。
3、對資料持有者的限制
資料持有者僅能在與使用者約定之範圍內使用資料,在無使用者許可下,不得用使用者所產出之資料去回推使用者的經濟、資產或生產等資訊,以避免損及使用者的商業地位。
資料法法案的主要目標在於塑造具競爭性的資料市場生態,確保資料的價值可公平分配到不同參與者身上,其聚焦在非個人資料的數位資料上,除適用於對歐盟提供產品/服務之廠商外,亦包含可於歐盟境內取得資料之情況。國內廠商宜先檢視自身商業行為與歐盟之關聯性,盤點現有產品或服務所產出的資料屬性,如可能需特別約定保密措施之營業秘密,預先規劃資料管理機制與對應管制措施,就重要資料或營業秘密管理機制可參資策會科法所公布之《重要數位資料治理暨管理制度規範(EDGS)》、《營業秘密保護管理規範》。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
柬埔寨於2017年1月23日與歐洲專利局(下稱EPO)在首都金邊簽署專利合作協議,該協議內容為申請人僅需提出歐洲專利申請,不論是申請案或是經核准的專利,其效力均可延伸至柬埔寨,並受柬埔寨專利法的約束。EPO局長Benoît Battistelli表示,此次合作協議將使得歐洲專利制度橫跨至亞洲市場,申請人在歐洲提出專利申請,即可在44個歐洲及非歐洲國家(包含摩洛哥、突尼西亞、柬埔寨)取得專利保護。除了可減少申請人的申請作業時間和成本,避免冗長的實質審查程序,也可提高歐洲專利權人在柬埔寨投資的意願。 柬埔寨同年9月亦與中國大陸知識產權局(SIPO)簽署性質相同的專利合作備忘錄,發明專利於中國大陸通過審查核准後,發明人可提出申請至柬埔寨取得專利權及相關保護,取得日期及保護時限20年與中國大陸相同,且申請日於2003年1月22日後的中國大陸發明專利,皆可於柬埔寨產生保護效力。 依據國際貨幣基金組織(IMF)最新預測與評估,柬埔寨在經濟持續高成長的情況下,將會是全球未來十年經濟成長最快速的國家之一。柬埔寨近年來積極規劃改革其智慧財產法制,並透過與其他國家簽署專利合作協議,來促進國內經濟及吸引外國直接投資。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
Google與Android 簽訂秘密協議,被控非法壟斷行動搜尋市場美國消費者權益律師事務所Hagens Berman於2014年5月1日向美國加州北區聯邦地方法院(U.S. District Court for the Northern District of California)針對Google提出一項全國性反壟斷的集體訴訟,控告Google運用市場影響力,要求Android行動裝置製造商祕密簽署「行動應用程式散布協議」(Mobile Application Distribution Agreements,以下簡稱MADA),使競爭者難以進入Android手機,阻礙市場競爭,非法壟斷美國網路行動搜尋市場。 MADA原屬於機密文件,因Google與甲骨文(Oracle)的專利訴訟而曝光。該協議規定所有Android行動裝置中必須內建其應用程式,例如Google Search、YouTube、Google Maps、Gmail、Google Play與Google Talk等APP,並把Google Search設為預設搜尋引擎。原告律師Steve Berman表示,「很明顯地,Google能獨占行動搜索市場並非透過良好的搜尋引擎,而是藉由不正當的競爭手段操控市場實現的。並以此抬高Samsung Electronics和HTC手機裝置價格,要求應判賠償金給權益受損的消費者。行動裝置製造商倘若能選擇其他廠商的服務,將能改善行動搜索品質。」 Google則聲明:「任何人都可以在沒有Google的情況下使用Android系統,相對的,也可以在沒有Android系統的情況下使用Google,兩者是可獨立使用的服務。自從Android推出以來,智慧型手機市場競爭愈來愈激烈,讓消費者有更多平價的選擇。」雖然Google並未阻止製造商在Android手機上安裝第三方應用程式,但這份協議明顯已經抑制市場競爭。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
美國農業部公布施行現代化肉禽屠宰檢驗規定修正條文美國農業部(United States Department of Agriculture, USDA)於今年2014年8月就現代化肉禽屠宰檢驗規定(Modernization of Poultry Slaughter Inspection)再新增肉禽屠宰相關行政管制規範,稱為新肉禽檢驗系統(New Poultry Inspection System, NPIS),藉此改進現行的肉禽檢驗系統(poultry inspection system)。該規定係美國於1957年為補充艾森豪總統簽署之肉禽產品檢驗法(Poultry Products Inspection Act of 1957)所制定,為美國國內現行肉禽檢驗系統之法源依據,由隸屬於USDA的食品安全檢驗服務(Food Safety and Inspection Service, FSIS)負責執行該規定所要求之相關肉禽食品安全稽查。但近年來各國陸續發生重大食安問題,加以該規定自1957年後,已制定60年之久,實有許多應檢討修正之處。適逢美國總統發布執行命令13563號(E.O. no.13563)要求各行政機關檢視並改進相關規範,以減輕肉禽產品遭受微生物汙染之風險,並整合政府相關行政資源提升行政檢驗效能及適時移除現行法規造成產業創新的制度性障礙。而該規範之新肉禽檢驗系統(new poultry inspection system, NPIS)目前僅適用於幼小雞隻的肉品和火雞肉之生產,且不會全面汰換掉現行的各項檢驗系統,由廠商進行成本效益分析是否將該新檢驗系統導入生產體系。新規定簡要介紹包括要求於冷凍程序前後需進行含菌量檢驗,且廠商必須發展、建立、維護此一管理作業流程,以確保肉品未受到汙染;此外,亦增訂其他規定,如限制生產線上每分鐘不得屠宰超過140隻肉禽、移除冷藏溫度之相關標準,改採廠商必須藉由實驗和技術支援等,反覆檢驗以實質判定其冷藏管理程序中實際合理之冷藏溫度,FSIS更重新定義規範中關於冷藏之定義,以符合產業現況。新規定目前已公告於聯邦公報(Federal Register),將於六個月後正式生效。