日本立憲民主黨提出SDGs基本法案,以達成2030永續發展目標

日本立憲民主黨於2023年6月13日向眾議院提出「SDGs基本法案」(持続可能な開発の目標の達成に向けた諸施策の総合的かつ一体的な推進に関する法律案),旨在達成2015年聯合國大會通過之「2030永續發展目標(SDGs)」。

去年6月立憲民主黨曾向參議院提出相關法案,但未審議就被廢止,此次係因日本政府針對SDGs雖有列舉相關議題,惟未對每個目標和達成度進行評估,僅是羅列先前政策,故立憲民主黨擔憂日本無法於2030年實現永續發展目標,重新向眾議院提出SDGs基本法案,希冀透過制定基本方針及必要事項,課予政府實施相關政策,法案主要內容摘要如下:

一、 提出基本原則要求政府應提供國民、經營者、民間團體等構成社會之多元主體,都能參與實現永續發展目標之機會,並應平等對待處於弱勢地位者保障其基本人權,使其受到尊重、充分發揮其個性及能力。

二、 另因永續發展目標與國際相互間有密切關聯,政府應確保國際合作,使目標一體化。

三、 除課予國家、地方自治體應提出SDGs基本方針外,亦要求地方公共團體、企業,在開展各項目活動時,應努力且有責任地一同促進實現永續發展目標。

四、 為實現目標,要求政府須採取必要法制、財政、稅制等措施,政策之內容亦應反映多種民意、確保公正性、透明性,且每年都要向國會提出施政成果及評估報告。

五、 設置「永續發展目標推進本部」(持続可能な開発目標達成推進本部),並邀請專家、利害關係人召開「永續發展目標推進會議」(持続可能な開発目標達成推進会議),一同評估基本方針政策及其達成狀況。

六、 由於實現永續發展目標並不因2030年後任務即刻終止,關於2031年以後之政策,政府應考量社會措施、國際動向等,依評估結果再採取必要之措施。

針對SDGs基本法眾議院已於10月20日交由委員會審議中,是否通過該法案仍待後續觀測,但已展現日本推動SDGs之決意。我國雖非聯合國之會員國,惟於2016年亦自願性回應全球永續發展行動與國際接軌,並於2021年成立「行政院國家永續發展委員會」,力求實現永續發展目標;然而僅靠政府機關的努力恐怕力有未逮,可參考日本作法納入國民、民間團體、企業等多元參與者,攜手合作共同實現SDGs。

相關連結
※ 日本立憲民主黨提出SDGs基本法案,以達成2030永續發展目標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9096&no=66&tp=1 (最後瀏覽日:2025/05/21)
引註此篇文章
你可能還會想看
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國FTC修正廣告使用推薦與見證指南

  美國聯邦交易委員會(Federal Trade Commission,FTC)於2009年10月5日公佈了新修正的「廣告使用推薦與見證指南(Guides Concerning the Use of Endorsements and Testimonials in Advertising)」,這是該指南自1980年制定以來第一次的更新,並於今年12月1日起生效。此次修訂特別針對商品服務使用心得做出規範,規範亦適用於社交媒體(如Facebook、Twitter及各種類型的部落格等具互動性的媒體)中之心得分享,未來在社交媒體對商品或服務所做出的各種評論,都有可能成為FTC管制的對象。     在社交媒體中所傳遞之商品心得訊息,特別是名人(在該領域分享心得出名者)所分享之訊息,對於網路使用者或消費者之影響力甚大,甚至會改變其是否選擇消費該商品或服務之意願,但其真實性卻未必有相當之保障。有鑑於此,FTC於新修正之指南中即對於心得分享之訊息作出相應規範,重點如下: 1.心得分享者若由商品或服務提供者處受有金錢或相當程度的利益給付,即非單純之心得分享,而有與廣告相同之性質。因此若有虛偽不實陳述的狀況,亦視為是不實廣告。 2.心得分享者必須揭露其與商品或服務提供者的利益關係,使其他消費者明瞭。 3.廣告中若有引用研究結果,而該研究機構為該公司所贊助時,廣告中必須揭露兩者的利益關係。 4.指南同時適用於談話性節目以及社交媒體上所為之心得分享。 而違反上述規定者,可能會依美國聯邦交易委員會法第5條(FTC Act Sec.5)之相關規定每次最高得處以1萬1千美元罰鍰。     此規定之公布引起了部落客(部落格使用者)之質疑,因此FTC廣告實務科(The Division of advertising Practices)之副科長Richard Cleland特別對此做出澄清,其指出:「FTC不會立刻處以罰鍰,也並非所有個案均嚴重至須處以罰鍰。較有可能的作法是,先以警告函警告違規的部落客。且FTC無權對違反FTC法案的行為直接處以罰鍰,若事態嚴重,則FTC會將案件移送地方法院,由法院做出各種處斷,最重可至罰鍰。」     此一指南的約束,固然提供了消費者分辨廣告與心得分享的方式,但是關於更細部的操作,例如何時可認為部落客與商品及服務業者有利益關係,仍有待實務的累積。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國參議院通過「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008)

  美國參議院以95對0票通過了「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008),該法案主要是為了增補「2007年基因資訊平等法」(The Genetic Information Nondiscrimination Act of 2007)所制定。   「2008年基因資訊平等法」的內容主要為:1.保險業者不得基於被保險人的基因資訊,拒保或是提高保費,也不得要求被保險人提供其基因資訊以供保險用途,除非符合該法的例外規定。2.雇主不得以員工的基因資訊來限制、隔離、分級員工的工作,更不可據此來剝奪員工的工作機會。但是,本法所稱的基因資訊不包含個人的性別與年齡。   在本法通過之前,美國已有41個州立法保護個人的基因資訊被保險公司使用,並且進行不平等的對待;另有32個州立法保護員工因為基因資訊,兒在工作場合受到歧視。美國並於2000年發佈行政命令(Executive Order 13145),禁止利用基因資訊歧視聯邦單位的員工;另外,「1996年醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)也針對歧視做了若干的保護,但是仍有許多漏洞,諸如沒有限制保險公司收集被保險人的基因資訊,或是沒有禁止保險公司要求被保險人進行基因檢測等,所以觀察家認為本法的通過對於個人權利保護是一項進步,但是遺傳病醫藥業者與研究者卻憂慮本法阻礙了醫療研究的發展。

TOP