美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容:
(1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。
(2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。
(3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。
具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。
從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。
日本IT總合戰略本部於2019年3月18日公告提出「數位程序法案(デジタル手続法案)」,本法案係集結多部法律修正案之包裹法案,包含行政程序網路化法(行政手続オンライン化)、居民基本簿冊法(住民基本台帳法)、官方個人認證法(公的個人認証法)、及個人編號法(マイナンバー法)。該法案的目的,在於應用資通訊技術簡化行政運作並提高使用便利性,藉此增進行政效率,因此在相關法令中明文擬定行政數位化的基本原則,增修推動行政程序線上辦理的共通規定與配套措施,賦予行政機關應履行的各項法定義務,同時為落實各領域推展行政數位化的規劃,制定個別具體規範。 於制定行政數位化基本原則、與增訂推動行政程序線上辦理的共通規定與配套措施之部分,主要為修正原「行政程序網路化法」,更名為「數位行政推進法(デジタル行政推進法)」,定位該法目標與功能為促進社會整體數位化,使國家、地方公共團體、民間業者、國民與其他人於從事各種社會活動時,均能享受到資通訊技術帶來的便利性。該法要求的基本原則,包含數位優先(digital first, 藉由數位手段一體化完成各項手續或服務)、免去重複提供資訊(once only,曾提供的資訊得被保留供再次使用)以及一步到位(connected one-step,謀求複數的程序或服務簡化為一步到位)。至於推動行政程序線上辦理的共通規定與配套措施,則包含要求地方公共團體須致力於達成行政程序線上辦理的目標,授權主管機關訂定得辦理網路身分認證與支付手續費等數位化法定程序、要求行政機關提出實現行政程序線上辦理與廢除紙本附件流程的資訊系統整備計畫等。 另一方面,針對各領域推展行政數位化的具體規範,該法案預備修正「居民基本簿冊法」、「官方個人認證法」以及「個人編號法」,主要內容包含:1. 保存個人電子認證資訊等相關官方服務的適用對象擴及旅外國民,同時得發行旅外國民之官方個人認證之電子證明書與個人編號卡,使其得透過網路使用相關的行政電子化服務;2. 長期且確實保存本人過去的居住遷徙紀錄,增設住民票註銷後原有相關記錄仍予以保留的「除票」制度,使國民過去的居住地紀錄,不會因為變更戶籍、依法註銷原戶籍地的住民票而消失;3. 過去使用官方個人認證之電子證明書與個人編號卡時須輸入密碼,官方個人認證法修正案則授權主管機關增設其他不需輸入密碼的使用方式,以呼應擴大電子證明書使用範圍的政策規劃;4. 賦予個人編號IC卡(マイナンバーカード)作為獨立有效之身分證明文件的地位,廢止原依法需和個人編號IC卡併用的紙本通知卡(通知カード)制度,免去個人住所等基本資料變更時,需同步更正通知卡紙本登載資訊的行政程序,減輕主管機關負擔。
OECD:汙染性能源稅收過低無法激勵低碳轉型經濟合作與發展組織(OECD)2019年9月20日根據《2019年能源使用稅(Taxing Energy Use 2019)》報告指出,汙染性能源會造成地球與人類健康的危害,而課徵「汙染性能源稅」是降低其排放的有效方法,且稅收尚可用於協助低碳轉型,但在報告所研究的44個國家能源排放量佔全球80%以上,與能源有關的二氧化碳排放中卻有70%未徵稅,課徵的汙染燃料稅過低,無法促使其改用較為清潔的能源(cleaner energy),而無法鼓勵低碳能源轉型。 能源稅中,道路燃料稅相對較高,但無法反映其造成環境損害的成本;煤炭稅在多數國家中幾乎為零,但煤炭的碳排放幾乎佔了能源碳排放的一半;天然氣是較為潔淨的能源,其稅收通常較高。在非道路的能源碳排放中,有97%被徵稅,但44個國家中只有4個國家(丹麥、荷蘭、挪威、瑞士)的徵稅在每噸30歐元以上,遠低於環境損害的程度,近年來甚至有國家降低能源稅。 該報告表示,改善稅收政策、為低碳技術提供公平的機會,將有助於將投資轉向更環保的選擇,且額外的稅收可用於社會目的,例如降低所得稅、增加基礎設施或醫療健保支出,OECD未來將衡量減排與其他社會目標(如健康與工作),採取有效的激勵措施減少碳排放,並呼籲各國政府應正視此一問題。
德國聯邦內政部對歐盟部長會議「資料保護基本規則」(Datenschutz-Grundverordnung)發表意見書,並提出修法建議德國聯邦內政部資料保護與資訊自由委員會於2015年8月15日針對歐盟部長會議於6月15日所確立對歐盟資料保護基本規則(Datenschutz-Grundverordnung)的基本立場,若依該立場則(1)資料處理目的之變更理由將變得更寬泛(2)對資訊保有機構所提出的申請程序以有償為原則(3)蒐集個人資料應遵循之規範過於簡略等,該委員會提出批評與建議。 該委員會會議認為有必要改進歐盟「資料保護基本規則」,令其更周延,更呼籲對資料保護基本規則的修正,應循以下重點及原則進行: 1.資訊節約原則應該堅持 多年來在德國法已確立的資訊節約原則(Datensparsamkeit)和資訊避免原則(Datenvermeidung),應予維持。因此資料保護基本規則中,須清楚詳盡地規定節約原則和資訊避免原則。 2.目的明確性原則的要求不能退縮 目的明確性原則(der Grundsatz der Zweckbindung)之功能,係為資料處理之透明性和可預見性,該原則亦強化了當事人的資訊自主權,使其得以信賴個人資料之處理,僅限於所申請之目的內進行。 故若依理事會建議之規範,使資料處理目的之變更,得以更寬泛的理由進行,將背棄歐盟基本權利憲章中之目的明確性原則。 3.即令個人同意書亦不得拋棄資訊主權 資訊自決權,意謂原則上個人可以用同意的方式,決定個人資訊的使用和拋棄。但即使有清楚明確的意思表示,該同意亦僅係保障資訊主權的重要因素之一。另就同意書而言,若如歐盟部長理事會所建議者,只需清楚明確即可,則這種方式於保護上是不夠充分的。 4.個人資料建檔必須有效地限制 該會議重申,嚴格規範對個人資料的蒐集有其必要性。為個人檔案之整合與充分使用設置嚴格的界限,現有規定太過簡略而遭到批評。 5.有效的資訊保護需要歐盟層級的企業與官署的資料保護專員 對於資訊保護監督的有效性,在德國已確立之官方與私人企業的資訊保護專員制度係重要之一環。應致力於歐盟層級公/私機構資訊保護專員制度在整個歐洲的推動。 6. 資訊傳輸第三國官署和法院需要更嚴格的監督 近期的隱私醜聞之後,目前亟需對歐洲公民個人資料給予更妥善的保護,以對抗來自第三國的機構。此意見書贊同歐盟議會的建議,即以第三國法院的判決和行政機關的決議,要求對個人資訊的披露,在歐盟之中僅能基於國際公約中機關互助和法律協助之規定,原則上予以承認與執行。
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。