美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容:
(1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。
(2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。
(3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。
具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。
從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。
商標具有表彰商品來源之功能,其設計為配合商品特色而具有識別性。商標註冊後,若不具有識別及表彰商品來源之特徵,而失去商標應有之基本功能,依據商標法第63條第4款,不具識別性之商標,無法主張商標專用之權利。商標名稱通用化,即是指原本具有識別性之商標,通常為著名商標,因為社會大眾消費習慣以及認知的改變,變成商品的通用名稱,此時即認該商標失去識別性,失去法律保護。 商標名稱通用化形成之原因不一,可能是企業經營者設計商標時,有意使用社會大眾熟悉之名稱作為商標,也有可能非商標權利人自己故意造成,特別是著名商標,容易流於通用化。例如,「可樂(cola)」一詞由可口可樂(coca cola)公司率先註冊使用,但於消費者心目中已成為特定碳酸飲料之名稱,則不得由可口可樂公司獨占使用;又如火柴盒玩具汽車,為火柴盒大小包裝之玩具,企業經營者以 matchbox 作為該玩具的文字商標,但美國聯邦最高法院認為matchbox屬於該商品之通用名稱,否認其商標權。 實務上判斷商標名稱通用化,以該商標名稱在一般消費者心目中認識的主要意義為標準。一個經過市場行銷之註冊商標名稱,若在消費者心目中屬於商品通用名稱,而非特定商品來源,則表示該商標名稱已不具備商標功能,不受法律保護。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
加拿大隱私專員呼籲提升加拿大人在美國之隱私保護加拿大隱私專員表示,其國人在美國雖享有一些隱私保護,但該保護主要係依賴不具法律效力之行政協議,因而相當脆弱。 隱私專員Daniel Therrien在一封致加拿大司法部長、公共安全部長及國防部長的公開信中,請求加拿大政府官員們向其對口之美國政府部門,要求藉由將加拿大列入美國國會去(2016)年通過之「司法賠償法案(Judicial Redress Act of 2015)」指定國家清單,以強化對其國人之隱私保護。隱私專員並表示,國人關切並請加拿大隱私專員辦公室(OPC)針對美國總統唐納.川普(Donald John Trump)所發布之行政命令進行影響評估,因其將排除非美國公民及合法永久居民隱私權法中關於個人可資識別資料之保護。 倘若加拿大能如同歐洲聯盟(European Union)及26個歐洲國家一般,於今年初時被列入前述指定清單,則其公民即可透過美國法院之強制執行,獲得隱私保障。此外亦可同時強化行政協議,如:美加邊境安全行動計劃(Canada-U.S. Beyond the Border Action Plan)及其聯合隱私聲明原則(Joint Statement of Privacy Principles)給予加拿大人之保護。 聯合隱私聲明原則涵括12項,其重要者有: 1.善盡一切合理努力,確保個人資料之正確性,以及後續請求查閱及更正錯誤之權利。 2.個人資料適當安全維護措施。 3.蒐集個人資料之相關性及必要性。 4.當事人認為其隱私受侵害時,得受繼有國家當局之賠償。 5.公務機關之有效監督。 縱算美國隱私權法自始即從未適用於加拿大人,且前開行政命令亦未改變現況,該命令仍突顯出「在南邊境上對加拿大人個人資料保護的顯著差距」。 「作為一個長期盟友以及密切的貿易夥伴,加拿大應要求被給予和那些經指定列入清單之歐洲國家相同程度之保護。」