加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下:
1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。
2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式:
(1)闡明著作權保護只適用於自然人創作的作品;
(2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者;
(3)為人工智慧生成的作品創設一套新的權利。
3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。
生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。
國際海事組織(International Maritime Organization, IMO)於2018年6月5日第99次海上安全委員會(MSC 99)上,根據日本等國提案,開始進行監理範圍之界定與檢討等相關工作(Regulatory Scoping Exercise, RSE)。於MSC 99之會議上,IMO已暫定自駕船之定義與自動化等級,並於2018年12月3日至12月7日於英國倫敦召開之MSC 100會議上進一步確定RSE框架,公布自駕船規則之制定期程表,具體措施將分為兩階段實行。第一階段預計在2019年9月前釐清可能妨礙自駕船航行,或者有修正和確認必要之IMO規定。第二階段則規劃在2020年5月召開之MSC 102前,檢討為實現自駕船所需修正及制定之IMO規則。此外,MSC 100亦批准2018年5月IMO人為因素、訓練和值班小組委員會(Sub-Committee on Human element, Training and Watchkeeping, HTW)提出之船員「疲勞指引」(Guidelines on Fatigue)修正案,並預計在2019年6月召開之MSC101上,進一步針對燃料油品質所引發之安全問題進行討論。
加州通過學生線上個人資料保護法案(the Student Online Personal Information Protection Act)隨著越來越多學校使用線上教育技術產品發展教學課程,並透過第三方服務提供者之技術蒐集學生的學習進度等相關資訊,資訊洩漏、駭客入侵、敏感資訊誤用或濫用等問題也因應而生。於2014年9月30日,加州州長Jerry Brown宣布幾項對加州居民隱私保護具有重要突破的法案,其中最引人關注的便是編號SB1177號法案,又稱學生線上個人資料保護法案(the Student Online Personal Information Protection Act,簡稱SOPIPA)。 SOPIPA禁止K-12學生線上教育服務經營者(operator)為下列行為,包括:(一)禁止線上教育服務經營者利用因提供服務所得之個人資料為目標行為(targeted marketing)、(二)禁止線上教育服務經營者基於非教育目的,運用因提供服務所得之個人資料為學生資料之串檔、(三)販賣學生之資訊、以及(四)除另有規定,禁止披露涵蓋資訊(covered information)。所稱之涵蓋資訊係指由K-12教育機構之雇員或學生所提供或製作之個人化可識別資訊(personally identifiable information),或是線上教育服務經營者因提供服務所得之描述性或可識別之資訊(descriptive or identifiable information)。 此外,SOPIPA線上教育服務經營者應採取適當安全的維護措施,以確保持有之涵蓋資訊的安全。同時,線上教育服務經營者應在有關教育機構的要求下,刪除學生之涵蓋資訊。 SOPIPA預計於2016年1月1日生效,將適用於與K-12學校簽有契約之大型教育技術與雲端服務提供者,同時也將適用於未與K-12學校簽署契約,但為該學校所使用之小型K-12技術網站、服務或APP等等。
法國法院判決:政府獨占賭博事業 違法賭博事業之經營是否應由政府獨占之議題,已陸續在歐洲國家產生爭議問題。2007年3月,義大利禁止於英國取得經營賭博事業執照之Stanley公司至義大利提供賭博服務,因此,義大利法院請求歐洲法院判決,以確定此一行為是否違反歐盟自由貿易原則。隨後,歐洲法院做出判決,認定義大利法律禁止未於義大利取得經營執照之公司在義大利境內經營賭博之規定,違反歐盟競爭法及歐盟條約第49條之規定。 2007年7月中旬,法國最高法院逆轉了過去禁止Malta’s Zeturf於法國經營經營賭博的見解,而遵循歐洲法院之判決結果,認為禁止賭博事業係違反了歐盟競爭法,以及歐盟條約第49條保障境內服務自由流通之規定,並基於上述理由判決Malta’s Zeturf取得於法國經營線上賭博遊戲之權利。法國法學專家Credric Manara以為,最高法院該判決將可能打開原來由政府獨占的賭博市場,而讓賽馬及其他運動賭博遊戲能擴及其他歐洲國家。 法國該向判決卻顯示了法國刑法禁止賭博的規定將無法限制歐盟條約中所保障的自由流通原則,然而,這樣的結果,卻也考驗了以刑法禁止賭博的國家對於法規衝突應如何解決以為之因應。
自動駕駛車輛之分級與責任所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。 而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。 德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。 故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。 修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。