美國明尼蘇達州、加州、北卡羅萊納州及田納西州之檢察總長於2023年11月加入「美國司法部(U.S. Department of Justice, DOJ)在同年9月對於肉品產業資料提供者(Agri Stats, Inc.,以下簡稱Agri Stats)提起的反壟斷訴訟」中,主張Agri Stats透過報告方式將肉品數據資料分享給訂閱服務之肉類加工商,此類資料共享行為削弱了市場競爭關係造成聯合行為,違反了休曼法(Sherman Act)。以下先就此案背景進行說明,以釐清此案象徵意義。
於2023年2月,美國司法部反壟斷部門撤回3項與資訊共享相關的聲明,該3聲明是為了醫療保健產業而發布,其中就資料分享之安全使用方式亦可讓其他產業的資料提供業者評估其資料分享行為是否造成反壟斷行為,惟在目前AI/演算法技術變革之下,利用共享所得之資料反推競爭對手之競爭策略具有可行性,因此當年認為有助於促進競爭之資料共享行為,現在反而有造成聯合行為之可能,故廢棄該3項已過時的聲明。
於2023年9月28日,美國司法部反壟斷部門於明尼蘇達州指控Agri Stats違反休曼法。Agri Stats為專門彙整、分析美國豬肉與家禽(肉雞、火雞)相關商業資料的資料處理商,並將其分析報告提供給具競爭關係的肉品加工商,肉品加工商可透過將Agri Stats分析報告反推以監控/預測出競爭對手之價格、供應量、營運計畫等,並依分析報告建議進行價格調高與減產的行為,而被美國司法部認定為聯合行為。
該訴訟所涉及的肉品加工商占了全美家禽(肉雞與火雞)銷售量的9成以上,豬肉銷售量的8成以上。目前已有前述4州加入該訴訟,法院後續會如何認定,將影響產業間的資料交換作法,也顯現出資料商業化前須先做好資料管理,確保在合規的範圍內進行資料利用,國內廠商可參資策會科法所公布之《重要數位資料治理暨管理制度規範(EDGS)》對自身資料管理機制進行檢視。
本文同步刊登於TIPS網站(https://www.tips.org.tw/)
在勒索軟體攻擊快速進化、供應鏈弱點成為主要攻擊途徑的背景下,英國於10月24日發布「全球性供應鏈勒索軟體防護指引」(Guidance for Organisations to Build Supply Chain Resilience Against Ransomware),該指引係由英國與新加坡共同領導的「反勒索軟體倡議」(Counter Ransomware Initiative, CRI)框架下推動,旨在協助各國企業降低勒索軟體事件的發生率與衝擊。該指引獲得CRI 67個成員國與國際組織的支持,標誌國際社群在供應鏈資安治理上的最新進展。 英國內政部(UK Home Office)指出,勒索軟體已成全球關鍵基礎設施與企業最主要的威脅之一。根據IBM發布之2025年資料外洩報告(Cost of a Data Breach Report 2025)估計,單一勒索攻擊的全球平均成本高達444萬美元。隨著攻擊手法演進,勒索攻擊已由單點入侵擴大為透過供應鏈滲透,攻擊者常以第三方服務供應商為跳板,一旦供應商遭入侵,即可能向上或向下影響整體產業鏈。英國2024年醫療檢驗服務供應商Synnovis遭勒索軟體攻擊事件,即造成數千次門診與手術延誤,凸顯供應鏈風險的實質衝擊。 該指引從供應鏈角度提出四大防護方向,英國政府與CRI強調,企業應在營運治理、採購流程與供應商管理中系統性導入相關措施,包括: 一、理解供應鏈風險的重要性 在高度互聯的數位環境中,供應鏈已成為勒索軟體攻擊的主要目標,企業應將供應鏈資安視為營運韌性與組織治理的核心要素。 二、辨識關鍵供應商與其資安成熟度 企業應建立完整的供應商清冊,評估其資安控管措施、過往資安事件紀錄、營運與備援能力、保險安排,以及其可存取之系統與資料範圍。 三、在採購與合約中落實資安要求 企業應要求供應商具備基本資安控制措施,包括多因素驗證、系統更新與修補管理、網路分段、安全設定及惡意程式防護等。 同時,合約中應納入資安事件通報義務、稽核權限、營運復原計畫及違規處置機制,並鼓勵供應商採用國際資安標準,例如Cyber Essentials與ISO/IEC27001。 四、持續檢討並更新防護措施 企業應與供應商共同檢討已發生事件及未實際造成損害但已暴露潛在風險之情形(Near Miss,即近乎事故),不論是否構成正式資安事件,均應納入檢討範圍;並定期進行資安演練、共享威脅情資,依攻擊趨勢滾動修正合約與內部規範。 指引同時指出,供應鏈常見弱點包括過度依賴少數供應商、缺乏供應鏈可視性,以及資安稽核與驗證機制不足。英國政府與CRI亦強調,雖然網路保險可作為風險管理工具之一,但無法取代基本且持續的資安防護措施。 該指引適用範圍涵蓋科技、資訊服務、能源、公用事業、媒體與電信等多個產業,顯示供應鏈資安已成全球營運安全的共同課題。英國與新加坡呼籲企業及早建立制度化的供應鏈資安治理架構,以強化全球數位經濟的整體韌性,降低勒索軟體攻擊帶來的系統性風險。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
何謂德國KOINNO創新採購中心?德國KOINNO創新採購中心是由德國經濟暨能源辦事處(Bundesministerium für Wirtschaft und Energie)轄下的倉儲管理、採購與物流經濟協會(Bundesverband Materialwirtschaft,Einkauf und Logistik e.V, BME)所執掌,該協會主要任務為關於政府採購與各領域的物流管理的研發成果技術移轉、促進職業與終生教育的補助與經驗交流,目的在於創造未來趨勢、經濟發展與鼓勵創新。而KOINNO創新採購中心的成立宗旨即是持續提供政府採購的創新來源,並引導具有創新元素的政府採購實踐為成功經驗與最佳練習。 其中政府採購方面,BME在2004年建立該平臺,其功能為提供使研發成果能最佳實踐的對話交流、創造未來發展趨勢與創新、將研發成果技轉給採購機關與提升政府採購的價值。德國慕尼黑國防大學的公共採購法學與管理研究中心(Forschungszenturm für Recht und Management öffentlicher Beschaffung der Universität der Bundeswehr München,FoRMöB)是KOINNO的合作夥伴,同時也是德國唯一以企業經營與法學觀點分析公共採購問題的跨領域研究中心。
聯合國人權高級專員辦公室發布《數位時代隱私權》調查報告聯合國人權高級專員辦公室(Office of the United Nations High Commissioner for Human Rights, OHCHR)於2021年9月15日發布《數位時代隱私權》(The Right to Privacy in The Digital Age)調查報告,分析各種人工智慧技術,例如側寫(profiling)、自動化決策及機器學習,將如何影響人民之隱私或其他權利,包括健康權、教育權、行動自由、言論自由或集會結社自由等,並提出對國家與企業應如何因應之具體建議。 一、針對國家與企業使用人工智慧之共同建議:在整個人工智慧系統生命週期中,包括設計、開發、部署、銷售、取得(obtain)或運營,應定期進行全面的人權影響評估(comprehensive human rights impact assessments),提高系統使用透明度與可解釋性,並應充分通知公眾與受影響之個人其正在使用人工智慧進行決策。 二、針對國家使用人工智慧之建議:應確保所有人工智慧的使用符合人權,明確禁止並停止販售不符合國際人權法運作之人工智慧應用程序。在證明使用該人工智慧系統能遵守隱私及資料保護標準,且不存在重大準確性問題及產生歧視影響之前,應暫停在公共場所使用遠端生物識別技術。並盡速立法及建立監管框架,以充分預防和減輕使用人工智慧可能造成不利人權的影響,以及確保在侵犯人權時能夠有相關之補救措施。 三、針對企業使用人工智慧之建議:應盡力履行維護人權之責任,建議實施商業與人權指導原則(Guiding Principles on Business and Human Rights),並打擊(combat)人工智慧系統開發、銷售或運營相關的歧視,進行系統評估與監測,以及設計有效的申訴機制。