歐盟執委會(European Commission)於2023年6月28日提出第三版支付服務指令(Third Payment Services Directive, PSD3)草案,目前預計於2024年底前通過最終版本,並於2026年施行。
相較第二版支付服務指令(PSD2),PSD3強化歐盟電子、數位支付和金融服務規範,補強安全性(Security)、透明度(Transparency)與促進創新(Innovation),建立更適合歐盟的支付架構。其旨在保護消費者權益和個人資訊,改善支付產業競爭環境,提高消費者對資料掌控度,促進創新金融產品服務發展。
PSD3修正重點歸納如下:
一、消費者保護:強化對未經授權交易之保護,完善支付詐欺或支付錯誤之賠償方案,減少消費者潛在損失。
二、開放銀行(Open Banking):持續推動開放銀行發展,透過加強規範第三方支付服務提供者(Third party payment provider, TPP)與提供更標準化與更安全的應用程式介面(Application Programming Interface, API),促進創新金融產業服務發展。
三、支付系統安全性:強化客戶身分認證(Strong Customer Authentication, SCA),促進支付過程的透明度與安全性。
四、因應新型詐欺:導入新規定與工具對抗日益增加的網路詐欺風險。
五、跨境支付:加強跨境支付措施與降低成本,推動歐盟市場一體化。
六、支付創新與多元化:導入區塊鏈或其他更先進的即時支付系統。
七、監管:制定更明確的法規,加強各方監管,確保市場公平與穩定。
繼2012年最高法院認為警方在無搜索令的情況下,以GPS追蹤裝置查探犯罪嫌疑人之位置資訊違反憲法第四修正案。最高法院於2017年6月5日,認為警方未持搜索票,而向電信公司取得犯罪嫌疑人過去127天共計12,898筆之行動通信基地台位置資訊(cell-site data)之行為,違反憲法第四修正案。 由於個人利用行動通訊服務時,必須透過基地台進行通訊,因而可藉由該基地台位置,得知每個人所在之區域位置,而此一通訊紀錄過去被電信公司視為一般的商業資訊,因為得知通訊基地台的位置資訊,無法直接得知個人所在的精準位置,僅能得知其概略所在地區。 因此,犯罪調查機關基於1979年 Smith v. Maryland案所建立之原則,即只要該個人資訊屬於企業的一般商業紀錄(normal business record),警方可以在無搜索令的情況下,向企業取得個人資訊, 此一原則又稱為第三方法則(third-party doctrine)。過去在地方法院或上訴法院的審理中,法院對此多持正面見解,認為只要該資料與進行中之犯罪偵查活動有實質關聯(relevant and material to an ongoing criminal investigation),警方即可向業者取得。大法官Sonia Sotomayor早在前述2012年GPS追蹤裝置案的協同意見書中表示,第三方法則不應適用在數位時代,例如用戶撥電話給客服人員,或以電子郵件回覆網路購物的賣方等,無數的日常活動已經大量的向第三方揭露許多資訊。 在數位時代,大量的個人資訊以電磁紀錄的形式掌握在第三方手中,本案最高法院的見解,將會對美國的犯罪調查機關在未持搜索令的情況下,更慎重的判斷向業者取得個人資訊做為犯罪偵查使用時,是否與憲法第四修正案有所違背。
美國2016年製造創新策略方案依2014年復甦美國製造與創新法(RAMI Act of 2014),美國國家製造創新網絡計畫於2016年2月公布策略方案(Strategic Plan)。國家製造創新網絡有四大目標:以「提升製造競爭力」為終極目標,其他三個目標分別為「促進技術轉型」、「加速製造業人力發展」、以及「確保穩定與永續之基礎建設」。在「促進技術轉型」方面,旨在促進創新技術朝向具備可適性、擁有成本效益、以及高效能之國內製造業量能的方向轉型。由於不同的製造整備度(manufacturing readiness levels)對應不同的技術整備度(technology readiness levels),且國家製造創新網絡有其設定之目標範圍,因而研發機構被預期能夠促進技術轉型的亦有差異。 行政院於民國105年7月核定通過「智慧機械產業推動方案」,透過「智機產業化」與「產業智機化」來建構智慧機械產業生態體系。智慧機械將結合半導體先進製程、精密醫療機械加工與智慧服務型機器人、以及航太與造船軍民通用技術應用,分別對應帶動亞洲矽谷、生技醫藥、以及國防等創新產業政策。透過智慧機械帶動整體產業發展,從精密走向智慧、從單機走向系統,以提高整體產業之產值
網路中立管制在美國與歐盟的新發展 因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)