簡析日本電子帳簿等保存制度與電子資料真實性之確保
資訊工業策進會科技法律研究所
2024年03月29日
日本一般社團法人數位信任協議會於2024年3月15日以數位資料真實性確保的重要性及證明其真實性的時戳技術為題,舉行JDTF電子帳簿保存法解說研討會。研討會中由國稅廳課稅總括課解說電子帳簿保存法上與資料真實性相關的利用者需留意的要點,以及時戳技術的利用意義,並舉出具體的利用者事例作為介紹。
壹、事件摘要
日本電子帳簿等保存制度係指,稅法上等有保存必要的「帳簿」或是「收據、請求書等與國稅相關的文件」,非以紙本方式,而是以電子資料的形式保存的制度,此制度被區分為電子帳簿等保存、掃描保存及電子商業交易資料保存等3種制度[1]。
貳、重點說明
日本電子帳簿保存法於2022年的修法中,廢除電子帳簿等保存制度以及掃描保存制度的承認制度等[2],其中尤其值得關注的是電子商業交易的電子保存義務化。意即,自2022年起個人事業者或法人需要以符合特定要件的方式保存該電子商業交易資料。惟由於日本過往對於所接收的電子商業交易資料均以書面原本的形式進行保存,因此2022年的電子帳簿保存法修正案,雖將所接收的電子商業交易資料以電子資料的形式進行保存作為原則,但是由於許多公司尚無法應對電子資料的保存要求,故日本將2022年1月1日至2023年12月31日的2年間,作為電子商業交易資料保存的宥恕期間,在宥恕期間內無法滿足電子商業交易資料且有正當理由的公司,仍然可以將電子商業交易資料以書面的形式保存,並在稅務調查時將所保存的資料以書面形式提交給稅務機關[3]。日本電子帳簿保存法中所指之宥恕期間,係指自2022年起至2023年12月31日間,無法將電子商業交易資料以電子資料形式進行保存的企業,在符合特定之條件下,使其得繼續維持書面資料保存的期間。須留意宥恕期間僅有2年,公司或法人須於宥恕期間的2年內建立可以符合電子資料保存要件的環境整備。以下就2024年實施的日本電子帳簿3種制度進行說明。
一、電子帳簿等保存制度
對於自身最初透過電腦等製作的帳簿如會計軟體製作的入出帳等,或是與國稅相關的資料如透過電腦製作的請求書、決算書等,在符合具備系統相關資料如系統概要書或操作說明書、在保存場所具備電腦、程式、螢幕、印表機及其操作指南,並將記錄事項以畫面或書面的形式呈現,使其可以快速輸出,以及可以應對稅務職員基於質問檢查權的電子資料下載要求等的要件下,可以不以書面列印紙本的方式,而係以數位資料的形式保存的制度[4][5]。
二、掃描保存制度
決算相關資料以外的國稅相關資料,在符合輸入期間的限制、時戳的付與、版本管理、具備可讀取的裝置、可以快速輸出、具備系統概要書等,以及確保檢索機能等的要件下,能以手機或掃描機器掃描的電子資料形式取代該資料書面原本進行保存[6][7]。
三、電子商業交易資料保存制度
被課與所得稅申告或法人稅等帳簿、資料保存義務者,在處理訂單、契約書、收據、報價單、請求書等或與其相當的電子資料時,在確保真實性及可視性的要件下,需要保存該電子商業交易資料[8]。
電子商業交易資料保存制度中的確保真實性要件包含接收已付與時戳的資料、對所保存的資料付與時戳、不論是資料的接收還是保存,皆已可留存訂正刪除履歷或無法進行訂正刪除的系統進行,以及制定關於防止不正當訂正刪除的事務處理規則並依循。可視性要件則包含具備監控、操作說明書等資料以及具備充足的資料檢索要件[9]。
日本電子帳簿等保存制度雖區分為3種不同的制度,惟其中對個人事業者及法人具有強制效力的僅有電子商業交易資料保存制度,電子帳簿等保存制度及掃瞄保存制度則係設置誘因機制促使業者遵循,如電子帳簿等保存制度中創設其所保存的帳簿如符合訂正刪除履歷留存等「優良電子帳簿」的要件,則可減輕過少申告加算稅的稅金[10];掃描保存制度則讓企業可以透過手機或掃描機器將資料原本掃描成電子資料並以之取代書面紙本進行保存,減少企業保存書面資料的空間成本,同時亦可減低資料檢索時所需花費的時間與人力成本。
參、事件評析
日本電子帳簿保存法中對個人事業者與法人在保存電子商業交易資料時,課以確保電子資料真實性以及可視性的義務,並透過時戳技術的利用,確保個人事業者與法人可以達成電子資料真實性以及可視性的要求。
對於電子資料真實性的管理,我國資訊工業策進會科技法律研究所創意智財中心於2021年發布重要數位資料治理暨管理制度規範(下稱EDGS),協助企業管理內部重要數位資料。EDGS中亦肯認應保存電子資料的訂正刪除歷程,並以時戳技術及存證技術確保資料未經變更、刪除及竄改之真實性。我國企業如欲對自身的數位資料進行管理及存證等,可參考資訊工業策進會科技法律研究所創意智財中心所發布之EDGS建立資料管理流程,以降低數位資料管理相關風險。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1]国税庁,〈電子帳簿保存法の内容が改正されました〜 令和5年度税制改正による電子帳簿等保存制度の見直しの概要 〜〉,頁1(2023年),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/pdf/0023003-082.pdf(最後閱覽日:2024/03/26)。
[2]〈税務手続の電子化に関する資料〉,財務省,https://www.mof.go.jp/tax_policy/summary/tins/i04.htm(最後閱覽日:2024/03/26)。
[3]国税庁,〈電子帳簿保存法一問一答【電子取引関係】〉,頁35(2022),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/pdf/0021006-031_03.pdf(最後閱覽日:2024/03/26)。
[4]同註1。
[5]国税庁,〈はじめませんか、帳簿・書類のデータ保存(電子帳簿等保存)〉,頁1-2(2023),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/tokusetsu/pdf/0023006-085_02.pdf(最後閱覽日:2024/03/26)。
[6]同註1。
[7]国税庁,〈はじめませんか、書類のスキャナ保存〉,頁1-2(2023),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/tokusetsu/pdf/0023006-085_03.pdf(最後閱覽日:2024/03/26)。
[8]同註1。
[9]同註3,頁8。
[10]同註5,頁2。
美國食品藥物管理局(the United States Food and Drug Administration,以下簡稱FDA)於2015年2月13日公告四項與藥品製造有關之指導原則(guidance)作為補充相關政策執行之依據,主要涉及藥品製程中,藥品安全不良事件回報機制、尚未經許可之生技產品的處理模式、藥品重新包裝,以及自願登記制度中外包設施之認定應進行的程序與要求。 該四項指導原則係源於FDA依據2013年立法通過之藥物品質與安全法(The Drug Quality and Security Act,以下簡稱DQSA)所制定之最新指導原則。因2012年位於麻州的新英格蘭藥物化合中心(The New England Compounding Center),生產類固醇注射藥劑卻遭到汙染,爆發致命的黴菌腦膜炎傳染事故,故美國國會制定DQSA,以避免相同事故再次發生。DQSA要求建立自願登記制度(system of voluntary registration),倘若製藥廠自願同意FDA之監督,成為所謂的外包設施(outsourcing facilities)。作為回饋,FDA即可建議特定醫院向該製藥廠購買藥品。 而本次四項指導原則之內容,其一主要涉及外包設施進行藥物安全不良事件回報之相關規定,要求製藥廠必須回報所有無法預見且嚴重的藥物安全不良事件。在不良事件報告中必須呈現四項資訊,其中包括患者、不良事件首名發現者、所述可疑藥物以及不良事件的類型。同時,禁止藥品在上市時將這些不良事件標示為潛在副作用。第二份指導原則對於尚未經許可的生技產品,規定可進行混合,稀釋或重新包裝之方法;並排除適用某些類型的產品,如細胞療法和疫苗等。第三份指導原則涉及重新包裝之規定,內容包括包裝地點以及如何進行產品的重新包裝、監督、銷售和分發等其他相關事項。而第四份指導原則規範那些類型之藥品製造實體應登記為外包設施。為此,FDA亦指出聯邦食品藥物和化妝品法(the Federal Food Drug & Cosmetic Act)之規定裡,已經要求製造商從事無菌藥品生產時,必須將法規針對外包設施之要求一併納入考量。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
英國BEIS與Ofgem發布「邁向智慧彈性的能源系統」公眾諮詢英國商業、能源和產業策略部(Business, Energy and Industrial Strategy, BEIS)與天然氣與電力市場辦公室(Office of Gas and Electricity Market, Ofgem)於2016年11月10日共同發佈「邁向智慧彈性的能源系統」公眾諮詢,此份文件作為英國致力於建設21世紀能源基礎設施的一部分,BEIS和Ofgem正進行合作確保英國的能源系統能夠應付未來最新的挑戰,並利用創新技術提供工作機會以及更好的服務。智慧彈性的能源系統將為英國消費者和經濟帶來顯著的好處,協助英國更靈活地使用能源,提高整個能源系統的使用效率。 本文件指出,消費者是智慧彈性能源系統發展的核心,該系統可提供消費者選擇並控制如何用電,包括由消費者產生的任何電力及電能。英國政府的基本概念係基於使市場能夠實現價格、質量的競爭,也希望創新的彈性解決方案能夠與更多傳統解決方案相互競爭。 智慧彈性的能源系統能帶給英國的好處包括以下:高效率的發電與調度、降低能源費用、增加消費者選擇、緩解氣候變遷對能源系統的損害、增加需量反應及儲能的應用、促進新興服務的提供、確保能源供應安全、移轉尖峰負載需求、簡化新能源技術整合既有系統的難度、出口低碳能源專業技術及知識服務、搭配天然氣補充間歇性能源之不足、避免關鍵能源基礎設施的不必要或重複的投資、可出口過剩能源至他國、推動能源產業的新商業模式等等。 對本文件的積極回應以及更廣泛的參與將有助於形成2017年春季公布的政策方案,未來該方案將闡明英國政府計劃採取的具體行動,以消除市場障礙、改善價格信號、促進創新、形塑能源系統中各方角色和責任,將英國未來導向更智慧、更靈活的能源系統,以滿足消費者和企業對於現在及未來的能源需求。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。