美國聯邦貿易委員會(Federal Trade Commission, FTC)於2023年12月對《兒童線上隱私保護規則》(Children's Online Privacy Protection Rule, COPPA Rule)提出修法草案,並於2024年1月11日公告60日供公眾意見徵詢。
FTC依據兒童線上隱私保護法(Children's Online Privacy Protection Act, COPPA)第6502節授權,訂定COPPA Rule,並於2000年通過生效,要求網站或提供線上服務的業者在蒐集、使用或揭露13歲以下兒童的個人資訊之前必須通知其父母,並獲得其同意。本次提議除了限制兒童個人資訊的蒐集,亦限制業者保留此些資訊的期間,並要求他們妥善保存資料,相關規定如下:
(1)置入固定式廣告時需經認證:COPPA所涵蓋的網站和線上服務業者現在需要獲得兒童父母的同意並取得家長的授權才能向第三方(包括廣告商)揭露資訊,除非揭露資訊是線上服務所不可或缺之部分。且因此獲悉的兒童永久身分識別碼(persistent identifier)也僅止於網站內部利用而已,業者不能將其洩漏予廣告商以連結至特定個人來做使用。
(2)禁止以蒐集個資作為兒童參與條件:在蒐集兒童參與遊戲、提供獎勵或其他活動的個資時,必須在合理必要的範圍內,且不能用個資的蒐集作為兒童參與「活動」的條件,且對業者發送推播通知亦有限制,不得以鼓勵上網的方式,來蒐集兒童的個資。
(3)將科技運用於教育之隱私保護因應:FTC提議將目前教育運用科技之相關指南整理成規則,擬訂的規則將允許學校和學區授權教育軟硬體的供應商將科技運用於蒐集、使用和揭露學生的個資,但僅限使用於學校授權之目的,不得用於任何商業用途。
(4)加強對安全港計畫的說明義務:COPPA原先有一項約款,內容是必須建立安全港計畫(Safe Harbor Program),允許行業團體或其他機構提交自我監督指南以供委員會核准,以執行委員會最終定案的防護措施,此次擬議的規則將提高安全港計畫的透明度和說明義務,包括要求每個計畫公開揭露其成員名單並向委員會報告附加資訊。
(5)其它如強化資訊安全的要求以及資料留存的限制:業者對於蒐集而來的資訊不能用於次要目的,且不能無限期的留存。
FTC此次對COPPA Rule進行修改,對兒童個人資訊的使用和揭露施加新的限制,除了將兒童隱私保護的責任從孩童父母轉移到供應商身上,更重要的是在確保數位服務對兒童來說是安全的,且亦可提升兒童使用數位服務的隱私保障。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
Ofcom於年度報告提出促進頻譜技術發展及創新建議英國通訊局(The Office of Communications, Ofcom)下設之頻譜諮詢委員會(Ofcom Spectrum Advisory Board, OSAB)於2024年10月10日發布「2023年度報告」(Annual Report 2023),為Ofcom提供頻譜管理重要議題及發展趨勢建議。 本報告具體討論內容如下: 1. 行動網路與Wi-Fi混合共享:OSAB支持探索混合共享選項,建議Ofcom於確認國內網路使用需求時,將資料傳輸巔峰時段及區域間使用差異列入考量,同時優先關注網路韌性,確保混合許可模式之可行性。 2. 頻譜管理永續性:使用高效能之無線基礎設施及技術,將有助英國達成淨零排放目標。以現有設施中使用之銅線技術為例,其運作過程耗能較高,若可改用光纖等更高效能設備,將有助降低能源消耗,故OSAB建議Ofcom制定獎勵措施,促進低效能設備汰換。 3. 6G標準制定:OSAB認為國際電信聯盟(International Telecommunication Union, ITU)6G發展願景與「第三代合作夥伴計畫」(3rd Generation Partnership Project, 3GPP)規劃之路線圖具一致性,故鼓勵Ofcom積極參與3GPP相關標準制定工作。 4. 共享近用執照(Shared Access Licences, SAL)框架發展:OSAB肯定SAL對創新監管之貢獻,並表示「擴增實境」(Augmented Reality, AR)和「虛擬實境」(Virtual reality, VR)等新技術之應用將增加SAL使用需求,建議Ofcom可推動SAL自動申請流程,提高工作效率。 綜上所述,OSAB建議Ofcom探索創新頻譜共享機制、加強國際影響力、提升國內使用者滿意度,以促進6G發展與產業創新。
跨國企業呼籲印度政府加強營業秘密保護印度納倫德拉.莫迪(Narendra Modi)政府為了吸引外資,鼓勵跨國企業在印度設立研發單位,目前該國商工部產業政策暨推廣司(Department of Industrial Policy & Promotion)正在研擬新的智財權政策。對此,英特爾日前去函相關權責部門,呼籲印度政府加強營業秘密保護,俾以增加投資者信心,吸引更多外資,甚至要求對竊取者科以刑責,藉此嚇阻不法。 印度目前僅透過普通法及契約法相關原則保護營業秘密,並未如同其他智慧財產權制定專法,使得外國公司不願與在地企業分享知識及技術。英特爾表示,當印度的資訊科技及創新持續成長時,有必要捨棄英國僅以契約保護的模式,透過法律科以相當刑責,確立營業秘密作為智慧財產權的地位。並補充道,營業秘密保護對於新設公司而言也很重要,因為它們可能沒有足夠的資源,就其研發及創新申請專利。 美國貿易代表Micheal Froman在雙邊貿易政策論壇中,也向印度商工部部長Nirmala Sitharaman提出相關議題,但印度政府認為現有法制已足敷使用,僅允諾將與美方代表交換法律文件,以便瞭解彼此法律規定。另名政府官員更明白表示,只不過因為美國最近頒行了統一營業秘密法(Uniform Trade Secret Act),並不表示印度也應該跳上同一艘船。
美國 FCC 公布「衛星補充涵蓋」監理架構,持續向「未來單一網路」的政策願景邁進美國聯邦通訊委員會(Federal Communications Commission, FCC)於2024年3月14日通過「衛星補充涵蓋(Supplemental Coverage from Space, SCS)」的監理架構,未來將增修聯邦法規電信專章(Title 47 of Code of Federal Regulation)開放600 MHz、700MHz、800 MHz、1800MHz中部分頻段及AWS H-block(1915-1920 /1995-2000 MHz),容許衛星通訊業者向地面行動通訊業者租用頻譜提供SCS服務。 SCS能讓用戶透過手機等既有的行動通訊終端接收衛星訊號,如Starlink目前正與T-mobile合作試驗,透過其第二代低軌衛星提供的手機直連(Direct to Cell)服務,能大幅延伸地面行動通訊系統的涵蓋區域。但為了最大程度防止有害干擾,FCC劃出6個獨立地理區域(Geographically Independent Area, GIA),地面行動通訊業者若要將頻譜出租予衛星通訊業者,除出租頻率需屬於SCS頻段外,還必須在一個GIA內擁有所有與出租頻率同頻的所有執照(all co-channel licenses),而衛星通訊業者僅能基於頻率租用協議,在該GIA內以次級使用的方式提供SCS服務。 雖然2023年底於杜拜落幕的世界無線通訊大會(WRC-23)才剛決議(Resolution com6/9 WRC-23)把「研究指配新頻率供衛星直接與地面行動通訊終端連接,以補充地面行動通訊的涵蓋範圍」納入WRC-27的議程項目 (Agenda Item 1.13 WRC-27),FCC就搶先開放SCS頻段,但表示會積極參與國際研究與活動,確保在國際電信聯盟(International Telecommunication Union, ITU)的無線電規則(Radio Regulation)下建立的SCS相關國際監理機制能取得重大進展,並隨著SCS市場的發展逐步開放能夠運用的頻段與應用場景,期能充分發揮衛星通訊與地面行動通訊整合的效益,互補不易涵蓋的區域並無縫銜接,達成「未來單一網路」(Single Network Future)的政策願景。