英國內政部(Home Office)於2023年11月30日與全球13家線上平臺與服務提供者(包括Amazon、eBay、Facebook、Google、Instagram、LinkedIn、Match Group、Microsoft、Snapchat、TikTok、X(Twitter)、techUK及YouTube等)簽署自願性《防範線上詐欺憲章》(Online Fraud Charter),促進落實防詐措施。
此協議針對線上平臺與服務提供者之防詐重點要求如下:
1.設置監測及預防體系:線上平臺與服務提供者應建立有效流程,以辨別、標註和移除不當的內容和帳號;記錄違規使用者,以防其再次啟用或註冊新帳號。此外,線上平臺與服務提供者應採行符合英國國家網路安全中心(National Cyber Security Centre)密碼保護指引的身分驗證機制,並鼓勵使用者採用兩階段驗證,幫助使用者辨別真偽。而在電子商務與社群媒體方面,線上平臺與服務提供者應設置賣家驗證措施以防範不肖業者,並為使用者提供高風險交易安全指南與安全支付服務機制及資訊,保障使用者之消費權益。
2.建立檢舉途徑:線上平臺與服務提供者應提供簡捷的檢舉途徑,方便民眾檢舉詐欺行為,並與執法部門合作,以快速通報平臺或服務所發生之可疑詐欺活動。當未知帳號透過私訊聯繫使用者時,線上平臺與服務提供者可提供適當的警告,以提醒使用者可能的詐欺風險。
3.與公部門合作進行防詐宣導:所有線上平臺與服務提供者必須參與英國線上廣告計畫任務小組(Online Advertising Programme’s Taskforce),完備防制詐欺網。並要求有付費服務之線上平臺與服務提供者於其平臺內設置廣告驗證程序,以便過濾並防止詐欺資訊傳播,確保網路廣告真實性。此外,線上平臺與服務提供者須與英國政府、英國金融行為監督總署(Financial Conduct Authority)及英國資訊專員辦公室(Information Commissioner's Office)等公部門展開跨部門協調合作機制,加強防詐情報共享與配合執法取締詐欺。最後,線上平臺與服務提供者必須提供最新詐欺風險資訊以幫助民眾辨別詐欺手法。
該憲章簽署之線上平臺與服務提供者須在六個月內實施上述措施,但因係自願性質,因此其有效性仍有待觀察。
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國化學營業秘密哪些必須揭露?哪些可以保密?為因應有害化學物質所產生之公安事件,2015年6月8號美國職業安全管理局(Occupational Safety and Health Administration,簡稱(OSHA))發佈一項措施,針對具危險性化學物質之運輸過程,規範處理程序,包括製造商須提供物質安全數據表,以及可能具有風險的有害物質說明書等。 為此,OSHA考量到此將影響化學製造商營業秘密保護,遂提出判斷準則,以釐清對於化學製造商而言,何種情況將構成營業秘密,包括:(1)在一定的程度內該資訊是否已被外界所知;(2)在一定程度內,該資訊對於員工或其他參與者是否已知;(3)是否有一定程度對於該資訊內容進行保護措施;(4)該資訊對於競爭對手是否有價值;(5)是否投入大量時間和金錢開發該資訊;(6)該資訊對企業而言是否得被他人簡易取得與複製。 進而在符合上述營業祕密要件時,企業即無須對一般員工(非研發工程師)揭露化學公式等內容,其中包括一般操作人員或者運輸人員等。然而考量到此等人員接觸化學物質情況頻繁,倘若操作人員或者運輸人員工作過程中,因有害但屬營業祕密之化學物質造成意外傷害,為平衡公眾安全與營業秘密之保障,OSHA要求化學製造商必須立即提供醫護人員有害化學物質方程式等內容,但可要求醫護人員簽訂保密協議,藉此兼顧公安與營業秘密之保障。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
新冠疫情下日本的數位經濟實踐之路新冠疫情下日本的數位經濟實踐之路 資訊工業策進會科技法律研究所 2021年3月9日 2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。 壹、主要問題 數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。 針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。 執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。 貳、具體案例 就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。 提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。 參、事件評析 有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。 經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。 參考連結 日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf [1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。 [2]同前註,頁15。 [3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。 [4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。 [5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。