英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。
此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動:
1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。
2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。
3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。
4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。
5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。
換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。
美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。 「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
日本政府擬修法全面禁止濫發商業電子郵件為解決日益嚴重的騷擾郵件問題,日本總務省於今(2008)年2月29日向國會提出「特定電子郵件送信適當化法修正案(特定電子メール送信適正化法改正案)」,將全面禁止未經收件人事前同意而擅自寄發宣傳廣告郵件,並將海外寄送之騷擾郵件列入適用範圍。 依據現行法之規定,未取得收件人同意寄送廣告或宣傳之郵件時,必須在主旨上標明「未經同意廣告」,並負有標示寄件人名稱、電話號碼之義務。如收件人發出拒絕收件之通知時,即禁止再傳送相關郵件;違反者將處以一年以下拘役或100萬日圓以下罰金。然而,一旦收件人回覆拒絕收件,將使業者察知該郵件帳號為有效帳號;故收件人對騷擾郵件大多不予理會,但如收件人未回覆拒絕收件之訊息時,該騷擾郵件仍得合法寄送。此外,依據調查,目前騷擾郵件中,有九成的電腦郵件及半數的行動電話簡訊,均是從海外所發出,而迴避了現行法之規範。 因此,本次修正草案明定全面禁止未經同意擅自傳送商業電子郵件至他人電腦或行動電話;即使取得收信同意,如中途拒絕時,其後即禁止再傳送郵件。此外,草案並課以郵件中應明示寄件者姓名、名稱及電子郵件地址,並要求須保存如何取得收件者同意之相關記錄。現行法不適用之海外寄送之騷擾電子郵件,也將與日本國內電子郵件受到相同規範。如偽裝電子郵件地址而傳送郵件時,或經總務省要求改善而未加以改善時,將處以最高3000萬日圓罰金。本修正法案預定於2008年中施行。
美國FTC表示 將檢視網路中立性此一議題美國聯邦交易委員會主席 Deborah Platt Majoras 於日前一場會議中表示, FTC 將成立網路接取工作小組 (Internet Access Task Force) ,負責檢視因科技發展所引發的議題以及法規的發展方向。除此之外,此一工作小組亦將針對近期來爭議不斷的網路中立性 (Net Neutrality) 進行檢視。 Majoras 表示對於是否立法規範網路,宜謹慎加以考量之,因為法規的影響深遠且長久。在缺乏明顯的證據證明市場失靈或消費者有受到損害的情況下,主管機關不宜採取任何法制措施規範市場參與者的行為。對於任何網路中立性或相類似的立法,宜考量其對於現有寬頻平台及市場環境的影響,以及此等立法對於產業未來創新與投資的影響。而關於網路中立性 (Net Neutrality) 之立法需求及細節,將由網路接取工作小組負責檢視之,其後續發展有待未來更進一步的觀察。