2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。
該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。
實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之:
一、人員面:
1.員工(教育訓練、合約)
在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。
在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。
2.生成式AI工具提供者(合約)
針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。
二、技術方面:
建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。
綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟執委會於2023年7月6日更新《軍民兩用貨品與優先技術出口相關限制》(Export-related restrictions for dual-use goods and advanced technologies)一般性指引,本指引彙整制裁俄羅斯與白俄羅斯的常見問答,針對歐盟2014年第833號規則(Council Regulation (EU) No 833/2014)第2條、第2a條以及第2b條等規定進行說明,提供相關主管機關、利害關係人(包括出口商)參考。 本指引此次更新「高度優先戰場項目清單」(List of High Priority Battlefield Items)以供相關主管機關密切追蹤相關貨品是否有違法輸往俄羅斯的狀況,分別公布四組HS稅號以監控貨品的進出: (1)積體電路相關項目,分別為HS稅號854231、854232、854233以及854239。 (2)通訊及被動電子元件相關項目,分別為HS稅號851762、852691、853221、853224以及854800。 (3)半導體裝置等項目,分別為HS稅號847150、850440、851769、852589、853669、853690、854110、854121、854129、854130、854149、854151、854159、854160、880730、901310、901380、901420以及901480。 (4)自動資料處理機器元件等項目,分別為HS稅號847180、848610、848620、848640、853400、854320、903020、903032、903039以及903082。
強化驗證技術以遏止網路犯罪美國聯邦政府與企業界正朝向增加驗證技術的使用,以遏止線上詐騙的盛行,所謂「雙重驗證( ”two-factor” Authentication)」機制,為美國聯邦財政機構檢測委員會(Federal Financial Institutions Examination Council, FFIEC )與美國芝加哥直銷協會( The Direct Marketing Association, DMA )推行,主要要求檢查除用戶名稱和密碼以外的東西來確認顧客的身份。 美國聯邦財政機構檢測委員會 —包括聯邦儲備(Federal Reserve)和聯邦存款保險公司(Federal Deposit Insurance Corp.,FDIC)等管理者在內,要求銀行2006年底皆必須加強網上身份驗證措施,如給每個顧客一份加密的憑證,這些憑證會向銀行證明用戶的真實身份。且該加密的憑證不會向發放該憑證的其它網站做出回應,這樣既保護了用戶,也保護了銀行。此外,美國聯邦財政機構檢測委員會審查員亦會定期檢查銀行的執行情況;而以美國芝加哥直銷協會為例,其要求會員於交易時所使用之電子郵件,須取得電子郵件系統的驗證,以確保電子郵件係由該協會成員所發出。 如同美國芝加哥直銷協會執行長 John A. Greco 所言,消費者可藉由此種驗證方式增加更多信心,對於其所取的資訊係來自可靠來源並具有合法性,可使市場減低網路犯罪之產生並對於政府、企業及消費者有更多保障。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
英國金融科技未來政策展望英國為眾多國家中致力發展金融科技的佼佼者,其相關政府部門-英國金融行為監理總署(Financial Conduct Authority, FCA)早於2016年即推出世界首例金融監理沙盒(Financial Regulatory Sandbox)制度,同時也與英格蘭銀行致力發展開放銀行業務、金融創新項目以及監管措施改革等等。也因為英國為金融科技提供了良好的環境以及養分,使目前英國金融科技佔全球市場總額10%,並有71%的英國公民至少接受一間金融科技公司提供服務;2020年金融科技為英國吸引了41億美元的投資,遠超德國、瑞典、法國、瑞士和荷蘭的總和。 為使英國金融科技持續成長,英國財政大臣於2020年要求針對英國金融科技現況及未來發展進行獨立性研究,該研究並於2021年2月公布。根據研究報告指出,英國金融科技正面臨下述三大問題: 其他國家紛紛仿效英國之成功模式,致使英國金融科技不再具有獨占地位。 英國脫離歐盟導致監管措施的不確定性。 新冠肺炎的來襲,迫使各國均快速發展並靈活運用金融科技,導致英國金融科技優勢地位逐漸喪失。 為了解決上述三大問題,研究報告提出了五項建議計畫: 針對政策以及監管方式之持續進步 雖然英國目前仍處於金融科技政策以及監管的領先地位,但隨著業務、科技等發展,必須確保政策以及監管方式繼續保護金融消費者,同時創造鼓勵創新和競爭的環境。因此建議的方案包含:實施新型態監理沙盒(Scalebox);建立一個數位經濟工作小組以確保政府各部門之一致性;確保金融科技成為貿易政策的一部分。 培養人才 英國需要確保金融科技擁有充足的國內和國際人才供應,以及因為預計在2030年,英國有90%勞動者需要學習新技能,因此也需要培訓和提升現有和未來勞動力技能的方案。因此建議的方案包含:辦理針對成年人進行再培訓和提高技能之短期課程;創建一個新的簽證類型,以提高獲得全球人才的機會;為學習金融科技的學生以及創業者建立媒合平台,設置金融科技人才管道。 建立友善的投資環境 英國雖然透過私募基金成功地為英國金融科技事業募資,但英國仍應該持續加強金融科技事業從初創到公開發行的一系列融資過程,尤其是融資的後期階段。因此建議的方案包含:擴大金融科技獎勵措施以及便利金融科技事業籌資(包含:擴大研發稅收抵免額度、企業投資計畫、風險投資信託);英國應該另行增設一個約10億英鎊之基金供金融科技發展使用;放寬英國上市公司限制(例如:雙層股權結構);創設一個全球金融科技指數以擴大金融科技事業知名度。 與國際合作 雖然英國目前取得金融科技的成功和未來數位貿易崛起的機會,但仍應採取更多的措施用以獲得更多國際支持,這將會成為英國在脫離歐盟後針對國際開放性作出的重大表態。因此建議的方案包含:針對金融科技提出國際行動方案;推動設立金融、創新和技術中心,並成立國際金融科技工作小組;推出國際金融科技認證組合。 英國國內整合 金融科技在國家的支持下,英國各地皆分布大量的金融科技人才。為了保持英國作為金融科技中心的地位,英國須注重規模和支持區域專業,尤其是大學正在創造的重要的智慧財產權。因此建議的方案包含:培育十大金融科技重鎮,而每個重鎮均應設置一個以強化金融科技、培養專家以及增加國家競爭力為目的的三年目標;通過金融、創新和技術中心協調國內金融科技發展策略;通過進一步的投資計畫加快金融科技重鎮的發展以及成長。