日本特許廳(Japan Patent Office,後稱JPO)於2024年6月駁回Google公司對來自中國大陸的深▲せん▼小▲ちぇ▼科技有限公司(後稱中國大陸公司)有關「FITBEING」文字商標的註冊異議,認為中國大陸公司的「FITBEING」商標與Google公司的「FITBIT」商標在外觀、發音等方面存在顯著差異,因此不會對消費者造成混淆。
中國大陸公司於2023年1月在日本申請註冊「FITBEING」文字商標,指定於第14類的「鐘錶和計時儀器」等商品。Google公司於同年8月對該商標提出異議,主張「FITBEING」商標與其於2018年註冊的「FITBIT」文字商標,在拼寫及發音上相似,並有致相關消費者混淆誤認之可能,違反日本商標法第4條第1項第11款、第15款。此外,Google公司亦表示其「FITBIT」文字商標已為Google穿戴設備的「周知」標識,應具有排他性。
JPO指出,儘管「FITBEING」和「FITBIT」在拼寫上皆以「FITB」開頭,惟二者字尾的「ING」和「IT」無論在文字外觀、字母數量還是音節數量上的差異皆具顯著差異。此外,JPO亦評估「FITBIT」商標是否為「周知」商標。依日本商標法第4條第1項第10款規定,與消費者廣泛認識其為表示他人營業商品或服務之商標相同或近似,使用於同一或類似之商品或服務者,不得註冊商標。本案中,JPO指出Google公司所提供的證據,包括各國市場調查報告和廣告宣傳資料,卻未能提交足夠的日本市場調查資料,以證明「FITBIT」在日本已被相關消費者廣泛認識為Google穿戴式設備的「周知」標識。因此,基於雙方商標近似及周知程度,JPO駁回了Google公司的異議,認定兩商標無導致消費者混淆誤認之虞。
由本案可知,日本JPO對商標近似性的判斷標準與我國大致相同,均會考量商標的外觀、發音及涵義的差異。企業在設計創作商標時,應檢視商標的外觀、讀音以及涵義,避免欲註冊商標與現有商標近似,以避免無法取得註冊商標。此外,若欲主張「周知商標」,企業應確保提交充分的當地市場調查資料證明商標的知名程度,包括當地市場的消費者調查結果及銷售資料等,當面臨爭議時,用以主張商標的著名程度。
本案目前經JPO駁回Google公司的異議後,尚無進一步的訴願或訴訟公開資訊。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw/)
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
開原碼授權 印度要走自己的路印度理工學院的 Deepak Phatak 啟動了一項建立 Knowledge Public License (知識公共授權,簡稱 "KPL" )的計畫,這種授權計畫允許程式人員跟他人分享自己的點子,但是同時保留軟體的修改權。它很像柏克萊軟體發行計畫或 MIT 授權計畫。目的是希望為建立一種環境,開發者既可以借助開放原始碼的合作力量,又能保護個人的利益。這項計畫還有助於舒緩開原碼運動和專屬軟體商之間日趨緊張的關係。 Phatak 的授權計畫有著先天的數量優勢。由於委外的興起和繁榮,印度已經成長為一個重要的軟體發展中心。 Phatak 也發起了一項 Ekalavya 計畫,鼓勵大家提出開原碼運動的新概念。
何謂「ERIC」?為加強歐盟及各成員國的研究基礎設施合作,從發展政策方面,於2002年成立「歐洲研究基礎設施策略論壇」(European Strategy Forum on Research Infrastructures, ESFRI)協助各會員國統籌規劃RIs(Research Infrastructures, RIs)的發展藍圖。在法律層面,於2009年通過「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EU) No 723/2009 of 25 June 2009 on the Community legal framework for European Research Infrastructure Consortium (ERIC),使各歐盟會員國、夥伴國家、非夥伴國家之第三國家或跨政府國際組織等對於分散的RIs整合起來後,可向歐盟執委會提出申請,依該號規則取得法律人格,成立「歐盟研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),且可為權利得喪變更之主體,更可與他方簽訂契約或成為訴訟當事人,使其具有自我經營管理之能力。 截至目前為止(2015年9月),歐盟的RIs正式成立11個ERIC,並且透過國際間合作將RIs做更有效率之使用。國際上近年來創新研發競爭激烈,歐盟執委會為了持續推動建置世界級歐洲研究區域(European Research Area, ERA),無論在資金面、政策面及法律層面均有積極作為,在強化歐盟RIs同時促進國際科技研發合作,俾使歐盟於研發創新的領域保持世界領導之地位,歐盟未來仍會持續推動各個重要研發領域的ERIC,ERIC對於整合歐盟各國重大RIs負有重要使命。
日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。 然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。 日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。 台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。