日本文化廳發布《人工智慧著作權檢核清單和指引》
資訊工業策進會科技法律研究所
2024年08月21日
日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。
壹、事件摘要
日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。
第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。
貳、重點說明
日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下:
一、不符合「非享受目的」的非法AI訓練
日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。
二、不能「不當損害著作權人利益」
從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。
三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7]
權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。
四、開發與提供者也可能是侵權責任主體[8]
該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。
參、事件評析
人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。
各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。
而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。
[2] 詳見前註,頁31。
[3] 詳見前註,頁7。
[4] 詳見前註,頁8。
[5] 詳見前註,頁9。
[6] 詳見前註,頁9。
[7] 詳見前註,頁35。
[8] 詳見前註,頁36。
[9] 詳見前註,頁42。
日本經濟團體聯合會、環境省、經濟產業省於2021年3月設立「循環經濟夥伴」(JAPAN PARTNERSHIP FOR CIRCULAR ECONOMY,J4CE),其係為實現循環經濟(CE),而有賴政府、民間企業、國際機構等相關組織,建立劃時代的產官合作平台。 J4CE已成立一年,此段期間已進行三次產官間之對話,如於2021年12月21日係針對「實現循環經濟所新增之成本為何?」、「如何解決所生之成本?」為主題,提出促進循環經濟值幾個值得注意之企業事例。 例如:「新的商業模式」中,由損害保險日本興亞公司與Second Harvest Japan公司共同合作,當食品運送過程中發生事故,該食品被判定失去市場價值時,能將其捐贈給Second Harvest Japan公司,其捐贈花費之費用或損失,將由損害興亞公司負責給付其保險金,而Second Harvest Japan公司則將捐贈之食品提供給生活困窮家庭,其作法將有助社會支援、減少食品浪費;另有Panasonic等電器公司提供「照明」服務,但非燈泡的所有權出賣,而是以繳納使用費方式,提供LED燈給企業經營者,並提供相關修繕、動產綜合保險等服務,已達到省電效果、降低能源成本等。 而在2022年2月17日第3次產官對話中主要以「循環經濟的投資者觀點與資訊公開方法」為主題,為因應氣候變遷經濟產業省設立TCFD制度已受到企業經營者的高度關注,因此也期待J4CE在循環經濟中也能有相同作用。 然截至今日最大難題還是在於當使用再生資源應如何將同質材料作為資源來運用較為棘手,J4CE目前除了對研究開發給予支援外,亦考慮增加補助金及放寬其限制等方式進行。
歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。
英國技術移轉政府辦公室發布2023至2024年之年度施政報告英國技術移轉政府辦公室(Government Office for Technology Transfer, GOTT)於2022年4月成立,主要解決公部門研發成果,即「知識資產」(knowledge assets, KA),因面臨運用不足及管理等困境,並積極推動公部門衍生新創政策,促進KA產業化。 GOTT會依研發法人的需求及經驗程度,提供個別支援性服務,如協助較無KA運用經驗之法人設置KA運用工作規則及管理方式等直接技術性指導,亦提供較有KA運用經驗之法人額外投資資金及其他資源挹注。 GOTT於2024年7月5日發布過去一年(2023年4月1日至2024年3月31日)之施政報告,主要重點簡述如下: (1)對「玫瑰書」(the Rose Book),即政府KA管理指引,提出細部操作指引,如:「PSB內KA管理負責人角色任命指引」、「協助PSB制定KA管理策略指引」、「智慧財產權及其機密性指引」、「附件A–知識資產類別與類型」、「附件B–KA評估工具」、「附件C–商業化路線」、「附件D–獲取KA指引」、「附件E–人才流動指引」以及「申請KA補助基金指引」等。 (2)推出首個政府對公部門創新研發之市場驗證加速器計劃,稱為「公共研究創新和市場加速器」(the Public Research Innovation and Market Accelerator, PRIMA),協助公部門創新者測試其研發構想、產品及服務是否有市場發展潛力。 (3)發布「公部門衍生新創公司研究」(Public Sector Spinouts Study),為英國政府首次對公部門推動衍生新創政策及制度進行審查,顯示英國推動上遇有許多推動障礙,研究最後對英國政府及GOTT提供多項施政建議。
英國電信市場競爭服務達到700萬線路英國的寬頻市場競爭在透過執行網路元件細分化(LLU)政策後,英國電信公司(BT)的對手競爭公司如Sky或TalkTalk,利用BT擁有的電話銅線,提供競爭通訊服務的線路數已達到700萬。這顯示英國電信管制機關Ofcom的細分化政策(LLU)已見成效。 這項政策係在2005年9月,由BT向Ofcom做出具有法律效力的承諾,Ofcom要求BT分拆成立一個新公司,稱為Openreach,負責向競爭對手提供線路出租的批發服務。Openreach是基於功能分離之實體,提供BT和其競爭對手完全一樣的交易條件,如契約條款、價格、系統和商業關係。 政策實施初期,英國電信市場僅有約12.3萬條細分化線路。多數人只能選擇BT作為寬頻及固網電話服務的供應商。 根據Ofcom的最新研究,目前英國有超過1900萬條寬頻線路。其中70%以上是由BT以外的其他公司提供服務,其中許多服務建立在BT的細分化網路元件的基礎上。 現有超過30家不同的公司,為家庭和小型企業提供非捆綁式(unbundled)服務。這有助於提升寬頻網路普及、降低固網電話的價格。與2005年9月相較,當時僅37%的家庭和小型企業有寬頻網路,現在這個數字是71%。 競爭對消費者而言,也帶來較低的費用。根據Ofcom的研究,在2005年最後一季時,消費者每月平均為寬頻網路服務支出約23.30英鎊。今天,他們為相同的服務每月付出大約13.31英鎊。 因此由零售價格、寬頻普及、競爭業者數量來看,英國的寬頻市場競爭已經達到一個重要的里程碑。