日本文化廳發布《人工智慧著作權檢核清單和指引》
資訊工業策進會科技法律研究所
2024年08月21日
日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。
壹、事件摘要
日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。
第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。
貳、重點說明
日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下:
一、不符合「非享受目的」的非法AI訓練
日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。
二、不能「不當損害著作權人利益」
從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。
三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7]
權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。
四、開發與提供者也可能是侵權責任主體[8]
該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。
參、事件評析
人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。
各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。
而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。
[2] 詳見前註,頁31。
[3] 詳見前註,頁7。
[4] 詳見前註,頁8。
[5] 詳見前註,頁9。
[6] 詳見前註,頁9。
[7] 詳見前註,頁35。
[8] 詳見前註,頁36。
[9] 詳見前註,頁42。
警告中提及,新加坡金融管理局(The Monetary Authority of Singapore, MAS)建議公眾在選擇投資加密貨幣時必須具備高度警覺,謹慎行事,並理解其所可能承擔之重大風險。金管局擔心由於近期加密貨幣之價格上漲,例如比特幣,人民可能會被吸引而投資加密貨幣。其他警告內容如下: MAS提醒社會大眾加密貨幣並非法定貨幣。它們非由政府發行,亦無任何資產或發行者之支持。 MAS認為近期加密貨幣價格之上漲係由投機所致,故價格急劇下跌之風險相當高,加密貨幣之投資者對於他們承擔著可能失去全部資本的風險應有所警覺。 加密貨幣之投資無任何監管保障。與大多數的司法管轄區一樣,MAS並未對加密貨幣進行管制。MAS法規既未對加密貨幣中介之安全性進行規制,亦未對加密貨幣交易有適當處理。 由於大多數加密貨幣交易平台之營運者並未存在於新加坡,故難以驗證其真實性或可信性。投資者與營運情形難以被輕易驗證之實體往來時,欺詐風險就更大。 加密貨幣之交易通常是匿名進行,使其易被誤用於非法活動。若發現加密貨幣中介平台非法使用加密貨幣,其執法機構可能會使其關閉。當加密貨幣平台沒有足夠強大的安全特徵時,可能會有被駭客攻擊進而造成損失之風險。 投資加密貨幣而蒙受損失之人民,將無法依賴由MAS法規所提供之任何保障。在投資加密貨幣之前,公眾應該仔細考慮產品所宣稱之高度獲利性,如果得輕易獲取可觀之利潤程度使人難以置信,那很可能就有問題。投資者應仔細評估加密貨幣之投資是否適合其投資目標與風險偏好。 人民若懷疑所涉及之加密貨幣投資可能會被詐欺或誤用於其他非法活動,應向警方舉報。
美國FDA將整合區塊鏈等新興技術於電子協同運作系統之開發,以提升藥物供應鏈的安全性依據2013年11月27日通過之藥物供應鏈安全法(Drug Supply Chain Security Act, DSCSA),美國食品與藥物管理局(US Food and Drug Administration, FDA)於2019年2月7日公布新的領航計畫(Pilot Program)。此計畫主要的目標在於發展電子協同運作系統(electronic, interoperable system)以降低不合規範的藥物於市場流通的可能性,並提升患者的用藥安全。 此運作系統預計於2023年開始正式實施,其主要的功能包含辨識(identify)或追蹤處方藥物(prescription drugs)於供應鏈中的流通狀態,以及排除非法藥物進入供應鏈。於後者的情形,此運作系統將同時協助相關主管機關在非法藥物於市場中流通時迅速反應。FDA進一步指出,為達到這些目的,將引入區塊鏈(blockchain)等已使用在全球食品供應鏈(global food supply chains)的管理技術,以促進系統運作過程中的可追蹤性(traceability)及準確性。 此計畫於2019年2月8日到3月11日間接受加入申請,FDA鼓勵供應鏈中的相關人員,包含製造商(manufacturers)、再包裝商(repackagers)及其他利害關係人(other stakeholders)加入並試行計畫中開發的運作系統等技術,以加強產品使用狀況的管理。此外,FDA未來將持續公布相關的指引草案,如藥物辨識指標(product identifiers)等,以提升產業利用性及藥物使用的安全性。
日本推升農業資料契約指針成為補助計畫要點日本農林水產省(以下簡稱農水省)從2021年起於補助計畫要點中規定,農業關係人利用農水省補助金導入智慧農機、無人機、農業機器人、IoT機器等所產生資料,且為系統服務業者取得、保管的情況下,須符合2020年農業領域AI資料契約指引要求之相關程序(下稱GL合規)。系統服務業者可依據農水省網站所提供的GL合規CHECKLIST,自行向律師、專利師等諮詢,評估其與農業資料提供者間契約是否GL合規。農水省亦於2020年年底召開兩場相關說明會,條列出須GL合規之補助計畫清單,且相關計畫規定預計於2021年生效(2021年1月6日至2月10日公開招募之智慧農業實證計畫即已有相關規定)。 前述規定係源自於2020年7月17日日本閣議通過最新版「規制改革實施計畫」,其中與「農業資料利用」相關實施項目為:利用農水省補助金導入智慧農業機械時所締結之契約,應符合2020年農業領域AI資料契約指引之核心精神,保障農民可使用其提供給系統服務業者所保管之數據資料。日本政府為促進農業關係人提供資料,於2020年制定農業領域AI資料契約指引,做為農業資料提供者與智農機具系統服務業者訂立契約時之參考。為更進一步促使系統服務業者獲得農業資料提供者的信賴,透過規制改革實施計畫,將該農業資料契約指針推升成為補助計畫要點,可作為我國農業領域推動資料提供、保護、或流通運用機制之借鏡。
歐洲專利局(EPO)專利申請案件數量持續增加歐洲專利申請案件於2015再次創下新高,達到279,000件之多,較2014年多了近5000件,前五名的國家分別是;美國、德國、日本、法國、荷蘭。當中,向European Patent Office (EPO,歐洲專利局)提出專利申請的就有160,00o件(2014年為152700件),其中美國以及中國的專利申請案件數量頗具貢獻,較2014年增加了16.4%以及22.2%。此數據顯示了全球商業對於專利保護的重視。 EPO 負責人Benoît Battistelli 對此表示,這代表著歐洲不儘有著高度吸引力的科技市場使企業以及研發者爭相投入,更是全球創新能量的核心。 像是義大利和西班牙是在他們近四年來表現最好的一年,專利申請案件分別成長了9%、3.8%;同時,比利時為5.9%、英國為5.7%、荷蘭為3.3%、瑞士為2.6%。甚至也有大幅成長的國家,波蘭成長17.8%、立陶宛成長62.5%。不過,部分國家專利申請案件數量卻是持續下滑,德國下降了3.2%、芬蘭下降8.3%、丹麥下降2.7%。 另外,值得一提的是,不僅是非歐洲當地企業在歐洲的專利申請案件數量有所增加,歐洲當地企業或是研發者於歐洲以外地區的專利申請案件數量也有亮眼的表現,再次顯現了歐洲的創新潛力。 以產業別觀之,醫學科技相關專利申請案數量再次位於EPO中的第一名,成長了11%,引擎相關專利成長18%、 藥學相關專利成長10%、電腦相關專利成長8%。 然而,這樣的成長都與接下來在歐盟會員國之間要實施的單一專利政策有著高度關聯性。單一專利目前由EPO執行,相關的準備已於2015年就緒,包含內部結構的調整,以達到高效率高品質的專利審查過程(去年僅有48%的申請案成功取得歐洲專利)。 當中還有統一專利法庭的設置(United Patent Court),而真正的落實就等德國和英國國內進一步批准United Patent Court Agreement 。EPO對此表示樂觀的態度,認為2016年將會完成所有程序。 最後,歐洲專利開始在歐洲以外地區生效,版圖逐漸擴大。摩洛哥和摩爾多瓦在去年3月、11月都陸續成為非EPO會員卻簽署EPO相關協議,使得該協議法律效果於其國內產生效力。相信這樣的單一專利體制將會對我國有意進入歐洲市場的企業有所助益。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。