日本文化廳發布《人工智慧著作權檢核清單和指引》
資訊工業策進會科技法律研究所
2024年08月21日
日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。
壹、事件摘要
日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。
第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。
貳、重點說明
日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下:
一、不符合「非享受目的」的非法AI訓練
日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。
二、不能「不當損害著作權人利益」
從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。
三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7]
權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。
四、開發與提供者也可能是侵權責任主體[8]
該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。
參、事件評析
人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。
各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。
而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。
[2] 詳見前註,頁31。
[3] 詳見前註,頁7。
[4] 詳見前註,頁8。
[5] 詳見前註,頁9。
[6] 詳見前註,頁9。
[7] 詳見前註,頁35。
[8] 詳見前註,頁36。
[9] 詳見前註,頁42。
德國聯邦政府於2018年11月15日公布聯邦政府人工智慧戰略(Strategie Künstliche Intelligenz der Bundesregierung),除了針對人工智慧一詞定義外,並概述德國人工智慧戰略的3項基本原則,14項目標和12項行動領域。 第一項原則係透過該戰略,為德國在人工智慧(AI)的發展和應用制定整體政策框架,促進德國成為人工智慧最佳研究環境,以及人工智慧在產業與中小企業之應用,以確保德國未來競爭力。第二項原則係人工智慧在社會各領域有多種應用可能性,將可明顯促進社會進步和公民利益,因此重點將強調AI的應用對於人類和環境可帶來的益處,並加強社會各界對於人工智慧主題的密集交流及討論,確保AI朝負責且共同利益為出發點的開發及應用。第三項原則將透過廣泛的社會對話和積極的政策框架,將道德,法律,文化和制度結合人工智慧之應用融入整體社會。 該戰略列舉之工作項目同時包括評量標準,包含建置德法創意網(虛擬中心)、起草國家級且持續性的教育策略、加強相關創業投資力道、針對相關新創公司提供綜合性諮詢和推廣服務、針對自願提供且符合隱私規範之共享資料與建立資料分析基礎設備者研擬獎勵及促進框架、利用風險投資、創業融資和成長科技基金計畫擴展籌資機會、建立至少12個AI應用中心、將人工智慧列為研發機構跳躍式創新的焦點,未來5年加強產學研合作項目推廣、將環境與氣候的人工智慧應用列為發展亮點、共同決策人工智慧技術的導入與應用、透過中小企業4.0中心每年至少與1000家企業建立聯繫並進行AI訓練、將AI實驗室應用情境移轉至工作場所、進一步發展人工智慧平台學習系統、設計擘劃跨領域社會科學之「未來數位化工作與社會基金」、進一步制定相關數位化轉型專家策略、建立德國人工智慧觀測站、組織以人為中心的人工智慧工作環境之歐洲和跨大西洋對話、促進具自決權,社會與文化參與性及保護公民隱私之創新應用、聯邦政府於2025年前將投資約30億歐元於人工智慧發展、開發人工智慧生態系統、培養至少100名相關領域新教授、與資料保護監督機關及商業協會召開圓桌會議。
德國「新車輛及系統技術」補助計畫第二期「新車輛及系統技術」(Neue Fahrzeug- und Systemtechnologien)補助計畫係德國為確保汽車產業能夠在未來保持其技術領先地位所規劃的研究補助方案,該計畫從2015年6月起為期4年,聚焦車輛本體設計及車聯網技術解決方案;2018年11月,有感數位化變革所帶來的壓力,以及聯網自動駕駛顛覆未來交通面貌的潛力,德國聯邦經濟及能源部(BMWi)決定將前述計畫延長4年至2022年12月31日,並追加補助金額至每年6000萬歐元,促進聯網自動化駕駛及創新車輛領域的相關研發,具體鎖定的項目包含:(1)創新感測技術與傳動系統(2)高精度定位技術(3)迅速、安全、可靠的通信協作技術(4)創新資料融合及資料處理程序(5)人車互動技術(6)配套的測試程序與認證(7)電動車搭載自動駕駛功能的具體解決方案(8)透過輕量化提升能源效率技術(9)空氣動力學優化技術(10)創新動力推進技術。聯邦政府希望藉由第二輪的「新車輛及系統技術」補助計畫,協助歷來引以為傲的汽車工業克服資通訊技術革新、氣候保護趨嚴及能源效率要求所帶來的挑戰,全力避免此一德國重要經濟命脈淪為數位化浪潮下的犧牲者。
FTC提供意見給NHTSA有關隱私權和車輛對車輛通訊(V2V)美國聯邦貿易委員會(FTC)針對國家公路交通安全管理局(NHTSA)的行政命令提出建議,就有關車輛到車輛通信(V2V)之事宜,FTC長期作為負責保護消費者隱私與安全的聯邦機構,FTC認為NHTSA在行政命令中採取隱私和安全問題考慮是非常適當。 在FTC的建議評論指出,FTC針對物聯網的的資訊安全疑慮,同樣也會適用在消費者的車輛收集的隱私和安全問題。FTC認為NHTSA的協商支持作法,基於流程的可解決隱私和安全隱患,其中包括隱私風險評估。該評論還讚揚NHTSA設計一個V2V系統來限制收集和存儲僅是供應其預期的安全目標的數據。 美國每年都會有上千人意外死於汽車意外事故,NHTSA研究指出,汽車相撞的原因多數情況下在於資訊的不透明,如果汽車之間可以「相互溝通」,讓駕駛彼此知悉對方的情況,就能減少碰撞事故。 「V2V」係指vehicle-to-vehicle,是規劃建立於汽車之間的通信網路。在這個網路中,汽車之間能夠互相傳送數據,告訴對方自己的狀態和行為,也了解其他車輛的狀態和行為。但是目前V2V各家發展的標準不一,因此假設福特的車如果不能跟其他廠商的汽車溝通,技術再好也沒用。 也因此,NHTSA在官網上公告規則,宣布將制定「V2V」通信技術標準的法規。也就是說,NHTSA將要制定一個統一的標準,來確保汽車之間溝通使用的是同一種語言。在最新的一份報告中,NHTSA詳細說明了「V2V」通信技術的軟硬體標準。它包括部署該項技術可能需要的硬體設施及其費用,汽車之間溝通的資料類型,以及該技術將如何提醒司機。此外,還覆蓋了「V2V」通信技術的安全細則,以及它將如何加密以避免竊聽和侵犯隱私。 在使用者和廠商都關心的資料外洩方面,NHTSA表示,資料本身將不包含個人身份資訊,並且將會被保密。目前提出的方案裡包含兩套數據,其中一個包含核心資訊:如位置、速度、駕駛方向、剎車狀態、車輛尺寸等。這些資料將即時更新並相互傳播。第二套數據則會更加複雜,只有在數據發生變化時才會相互傳輸。它包括汽車輪胎是否漏氣,前燈是否打開,保險杠的高度,是否行駛在密集人群中等。
美國聯邦資料戰略〈2020年行動計畫〉美國白宮於2018年3月發布〈總統管理方案(President’s Management Agenda)〉,其中發展「聯邦資料戰略(Federal Data Strategy)」,將資料作為戰略資產,藉以發展經濟、提高聯邦政府效能、促進監督與透明度,為方案中重要之工作目標之一。「聯邦資料戰略」之架構上主要包括四個組成部分,以指導聯邦資料之管理和使用:1.使命宣言:闡明戰略之意圖與核心目的;2.原則:有十大恆定原則對於機關進行指導;3.實作規範:有四十項實作規範指導機關如何利用資料之價值;4.年度行動計畫:以可衡量之活動來實踐這些實作規範。 於2019年12月23日,〈2020年行動計畫〉之最終版正式發布,其將建立堅實之基礎,在未來十年內支持戰略之實踐。詳言之,〈2020年行動計畫〉之內涵主要包含三大部分與二十個行動: 機關行動:旨在支持機關利用其資料資產,包括六大行動:(1)行動1:確認用於回答對於機關而言具有優先性之問題所需之資料;(2)行動2:將機關之資料治理制度化;(3)行動3:評估資料與相關基礎設施之成熟度;(4)行動4:確認提高員工資料技能之機會;(5)行動5:確認用於機關開放資料計劃之優先資料資產;(6)行動6:發布與更新資料庫存。 實踐共同體之行動:由特定機關或一群機關就一共通主題所採取之行動,可加速並簡化現有要求之執行,包括下列四大活動:(1)行動7:成立聯邦首席資料官委員會;(2)行動8:改善用於AI研究與發展之資料與模型資源;(3)行動9:改善財務管理資料標準;(4)行動10:將地理空間資料實務整合至聯邦資料事業中。 共享解決方案行動:為所有機關之利益、由單一機關或委員會試行或發展之活動:(1)行動11:開發聯邦事業資料資源儲存庫;(2)行動12:創建美國預算管理局聯邦資料政策委員會;(3)行動13:制定策畫之資料技能目錄;(4)行動14:制定資料倫理框架;(5)行動15:開發資料保護工具組;(6)行動16:試行一站式之標準研究應用程序;(7)行動17:試行一種自動化之資訊收集評論工具,該工具支持資料庫存之創建與更新;(8)行動18:試行用於聯邦機構之增強型資料管理工具;(9)行動19:制定資料品質評估與報告指引;(10)行動20:發展資料標準之儲存庫。 〈2020年行動計畫〉確定機關之初步行動,其對建立流程、建立能力、調整現有工作以更好地將資料作為戰略資產至關重要。未來之年度行動計畫將會在〈2020年行動計畫〉之基礎上進一步發展出針對聯邦資料管理之協調方案。