日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》

資訊工業策進會科技法律研究所
2024年08月21日

日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]

壹、事件摘要

日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。

第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。

貳、重點說明

日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下:

一、不符合「非享受目的」的非法AI訓練

日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]

二、不能「不當損害著作權人利益」

從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]

三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7]

權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。

四、開發與提供者也可能是侵權責任主體[8]

該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]

參、事件評析

人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。

各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。

而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。

[2] 詳見前註,頁31。

[3] 詳見前註,頁7。

[4] 詳見前註,頁8。

[5] 詳見前註,頁9。

[6] 詳見前註,頁9。

[7] 詳見前註,頁35。

[8] 詳見前註,頁36。

[9] 詳見前註,頁42。

你可能會想參加
※ 日本文化廳發布《人工智慧著作權檢核清單和指引》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9232&no=64&tp=1 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
歐盟數位經濟公平稅負指令草案無共識,法國與奧地利將先行交付立法

  2018年3月21日,歐盟執行委員會(European Commission)發布數位經濟公平課稅(Fair Taxation of the Digital Economy)指令草案,指出在數位經濟模式中,由於創造利益的用戶資料地並不受限於營業處所,因此銷售貨物與提供勞務之增值發生地,與納稅主體之納稅地點分離,而無法為現行來源地原則所評價,嚴重侵蝕歐盟境內稅基。對此,該草案分別提出了數位稅(Digital Tax)與顯著數位化存在(Significant Digital Presence)兩份提案,用以針對特定數位服務利潤制定共同性數位稅制,以確保數位服務業者與傳統的實體公司立於平等的市場競爭地位。   值得關注的是,該草案之長遠解決提案以「顯著數位化存在」(Significant Digital Presence)修正國際間課稅權歸屬之重要人事(Significant People function)功能判斷,並認為建立利潤分配原則時,應參考經濟合作暨發展組織(Organization for Economic Cooperation and Development)稅基侵蝕與利潤移轉(BEPS,Base Erosion and Profit Shifting)行動計劃中DEMPE模式(Development Enhancement Maintenance Protection Exploitation function),決定獲利之分配,作為未來增值利益的認定。   然而不少持反對意見的國家認為,數位經濟只是傳統公司面對數位化,利用無形資產的商業模式改變而已,而此種新興模式並不足以作為開徵數位稅收新稅種。縱使數位經濟下無形資產產生之價值必須重新界定,現行稅收歸屬與國際間租稅協定本身並無不妥,而應強調各國稅捐機關之租稅資訊之合作。愛爾蘭已與捷克共和國、芬蘭、瑞典發表反對聲明,表示數位經濟課稅的方案不應背離BEPS行動計畫之期中報告,並應考慮到國際間因租稅引起的貿易戰爭,以及避免對數位經濟的扼殺。對此,歐盟監管審查委員會(Regulatory scrutiny Board)亦認為,草案並未針對數位稅的有效稅率進行量化分析,嚴重忽略了數位稅對於區域內經濟的衝擊。   由於未能獲得歐盟會員國的共識,法國為了回應黃背心運動(Mouvement des gilets jaunes)的要求, 12月17日法國財政部長已公開表示2019年3月前,將自行針對數位廣告所得與數位資料所得稅收法案送交國內立法程序,該法案將直接以境內網路社群利潤推估大型數位企業之應稅所得,並支持「顯著數位化存在」的認定原則。同時奧地利財政部長也表示,會跟進數位稅收的立法並於2019年1月底公布稅收草案。

演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

替代能源再添一項 筆記型電腦燃料電池後年問世

  燃料電池是種藉由氫氣及氧氣產生電化學反應,而將化學能轉換電能之裝置,運用在交通運輸及可攜式產品(如手機或筆記型電腦等)方面,目前以質子交換膜燃料電池為主,其中的關鍵組件是電池內部兩片基板中的薄塑膠質子交換膜,目前仍是杜邦公司(Nafion膜)的專利權。   在世界石油能源有限的情況下,替代能源是各國急於開發的產品。杜邦全球科技長Thomas Connelly表示,杜邦將與台灣電腦廠商合作開發筆記型電腦燃料電池,備機時間可長達10小時,預計二至三年後推出。   燃料電池成為明星電源,乃基於三大特色︰第一是效率,它的能量轉換效率非常高;其次是乾淨,發電過程幾乎沒有造成任何污染;第三是安靜。在國外,燃料電池的發展已趨成熟並邁入商業化階段。在國內,國人對於燃料電池的應用較為熟悉應屬「電動車」,只不過成本居高不下,在政府補助不足及週邊規劃未盡完善下,造成推廣不佳,商業化困難。

以再生能源公司終止併購而衍生之營業秘密糾紛案為鑒,提供企業管理建議

2025年7月30日,美國加州法院指出公司濫用合作談判地位以爭奪再生能源市場之行為,從商業角度極為惡劣,將面臨重大法律風險,並認定Phillips 66能源公司須向Propel Fuels(下稱Propel)競爭公司給付共約8億美元的賠償金。 本案源於2017年,Phillips 66公司以收購為由,雙方簽署收購意向書,對Propel公司進行盡職調查。於此期間,Propel公司依保密契約向Phillips 66公司揭露其再生柴油專屬策略與資訊,Phillips 66公司並從 Propel 下載近 3千份包含營業秘密的紀錄。於2018年8月24日,Phillips 66公司突然終止收購並於下一工作日向加州監管機構宣布其將加入加州再生能源市場,2019年正式銷售高混合可再生柴油。 2022年2月16日,Propel公司向加州法院控訴Philips 66公司不當使用Propel公司花費13年研發得出之財務與銷售資料、營運模式及其再生能源業務的預測資料等營業秘密,致Propel公司損失2億美元。於2024年10月16日,本案認定Phillips 66公司違反加州統一營業秘密法(Uniform Trade Secrets Act),不當使用Propel公司的營業秘密, Phillips 66公司應賠償6.049 億美元。其後,本案認定Phillips 66公司行為屬惡意不當使用營業秘密,依加州統一營業秘密法,法院可另將懲罰性賠償金增加至2倍。2025年7月底,本案認定之賠償金達到8億美元,包含自2024年之6.049億美元的補償性賠償金,以及因Phillips 66公司「惡意」不當使用營業秘密的行為,追加1.95億美元的懲罰性賠償金。 綜觀前述實務案例可得知,即便公司間已簽訂保密契約,仍存在公司假借併購盡職調查、合作協商為由,要求他公司提供機密資料。為降低與外部合作而衍生之機密外洩風險,以下為公司提供資料對外之前、中、後階段可參考之管理建議: 1. 對外提供資料前 (1) 內規定義營業秘密搭配機密分級,了解營業秘密之範圍,並依據不同機密等級採取相應的管制措施。 (2) 對外提供資料前,營業秘密相關之權責人員應審查資料適合揭露與否。 (3) 與外部合作協商前,即應確認簽訂保密契約與約定權利歸屬。 2. 已對外提供資料 倘若已對外提供資料,建議採取限制流通、限制權限等作法,如僅限該合作計畫相關人員透過身分認證登入帳號,方有線上瀏覽機密之權限等方式。 3. 對外提供資料後 於合作結束或協商破局之情況,應要求合作方返還或銷毀營業秘密,如為銷毀,應附上相關聲明並佐證執行紀錄。 前述建議之管理作法已為資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」所涵蓋,企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP