2024年9月1日,澳洲生效《政府負責任地使用人工智慧的政策》(Policy for the responsible use of AI in government,下稱政策)。澳洲數位轉型局(Digital Transformation Agency,以下稱DTA)提出此政策,旨於透過提升透明度、風險評估,增進人民對政府應用AI的信任。
1. AI之定義
此政策採經濟合作暨發展組織(OECD)之定義:AI系統是一種基於機器設備,從系統接收的資訊進而產出預測、建議、決策內容。
2.適用範圍
(1)此政策適用於「所有非企業的聯邦個體(non-Corporate Commonwealth entities, NCE)」,非企業的聯邦個體指在法律、財務上為聯邦政府的一部分,且須向議會負責。此政策亦鼓勵「企業的聯邦實體」適用此政策。
(2)依據2018年國家情報辦公室法(Office of National Intelligence Act 2018)第4條所規定之國家情報體系(national intelligence community, NIC)可以排除適用此政策。
3.適用此政策之機構,須滿足下列2要件
(1)公布透明度聲明
各機構應在政策生效日起的6個月內(即2025年2月28日前)公開發布透明度聲明,概述其應用AI的方式。
(2)提交權責人員(accountable official,下稱AO)名單
各機構應在政策生效日起90天內(即2024年11月30日前)將AO名單提供給DTA。
所謂AO的職責範圍,主要分為:
I.AO應制定、調整其機構採取之AI治理機制,並定期審查、控管落實情況,並向DTA回報;鼓勵為所有員工執行AI基礎知識教育訓練,並依業務範圍進行額外培訓,例如:負責採購、開發、訓練及部署AI系統的人員,使機構內的利害關係人知道政策的影響。
II.當既有AI 應用案例被機構評估為高風險AI應用案例時,通知DTA該機構所認定之高風險AI應用案例,資訊應包括:AI的類型;預期的AI應用;該機構得出「高風險」評估的原因;任何敏感性資訊(any sensitivities)。
III.擔任機構內協調AI的聯絡窗口
IV.AO應參與或指派代表參與AI議題之政策一體性會議(whole-of-government forums)。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
有鑑於今年4月底,一架攜帶具有放射性物質的小型無人機墜毀在日本首相官邸的屋頂上,對元首維安構成威脅,日本政府為此決定加強無人機管控。日本國會並於9月通過民用航空法(Civil Aeronautics Law)修正案,明確列出無人機禁止飛行範圍,違反者最高將可處以50萬日圓(約4,200美元)以下罰鍰,但因災害或自然事故發生而利用無人機進行救援、搜索行動不在規範範圍。 法案主要修正內容為,特定空域未經申請不可飛行,例如禁止無人機飛越人口密集的住宅區及機場周邊區域,人口密集地區,以每平方公里人口4,000人為界,因此東京都23區和主要區域城市,將會列為無人機禁航區。另外,在舉行慶祝活動及展覽等會吸引大批群眾暫時聚集的地區上空,無人機亦不可飛行。 然而,通過申請後的飛行區域,仍須遵守幾項要求,如無人機須於日間目視範圍內飛行、無人機與人員及建築物必需保持一定距離,以及未經政府許可,夜間不可使用無人機,並禁止無人機裝載爆炸裝置等會造成人員傷害或財物損失的危險物品。除此之外,並定義「無人機是透過遠程遙控或自動駕駛儀器飛行,且無人機作為機器不能搭載乘客」,但輕量型玩具飛機不包含在內。修訂後的法案將於今年年底前開始施行。 此外,下議院目前仍審議有關禁止無人機靠近重要設施,包含首相官邸、國會、皇宮、核電廠之草案。
美國FDA於20250617宣布將試行「局長國家優先審查券」COVID-19疫情後美國開始積極處理藥品供應鏈脆弱性,為提振本土製造與審查效率,美國食品及藥物管理局(Food and Drug Administration, FDA)於2025年6月17日宣布將試辦「局長國家優先審查券」(Commissioner’s National Priority Voucher, CNPV)。該計畫依據《聯邦食品、藥品與化妝品法》(The Federal Food, Drug, and Cosmetic Act, FFDCA)與《公共衛生服務法案》(Public Health Service Act, PHSA)授權。CNPV將不同審查分組集中處理,並結合資料預先提交機制,力求將一般10-12個月的審查流程壓縮至1-2個月,試辦期為一年,並與現行優先審查及優先審查券(Priority Voucher, PRV)機制獨立並行。 內容要點: 1.遴選資格:符合任一「國家優先」標準之廠商 因應公衛危機:如廣效疫苗開發 帶來潛在的創新療法:超越突破性療法認定成效的新型療法 解決未滿足公共衛生需求:如罕病或缺乏療效標準治療之疾病 提升美國供應鏈韌性:如將藥品研發、臨床、生產遷至美國 提高可負擔性:將美國藥價降至最惠國藥價,或減少下游醫療費用 2.使用與要求: 適用階段:可於申請臨床試驗或申請藥證等階段啟用,亦可先領「未指名券」保留資格。 文件要求:需提前60天提交完整藥品化學製造與管制(Chemistry, Manufacturing, and Controls, CMC)與仿單預審,如遇重大缺件FDA得延長審查期限。 有效性:2年內使用,逾期失效;不可轉讓,但併購案中可沿用。 CNPV透過團隊同日決策,有望在FDA人力縮減背景下縮短審查時程。並強調國家利益,可能優先惠及具戰略價值及在美投資的大型藥廠;對我國優化藥品審查流程與吸引製造投資等目標,亦具重要參考價值。
幹細胞研究 麻州亮綠燈美國麻薩諸賽州州長 Mitt Rom-ney 在五月二十七日否決一項允許在麻州擴大胚胎幹細胞試驗研究法案。州長支持使用成年人的幹細胞或從治療不孕症診所剩餘冷凍胚胎提取細胞的研究,但他呼籲州議員禁止複製,因為提取幹細胞會摧毀胚胎。他說,這相當於創造人類生命只是為了摧毀它,在道德上不具有合理性。此外,他還呼籲州議員在法案中增設一項條款,規定懷孕那一刻即為生命開始,禁止為了其他研究製造胚胎,並限制給捐獻卵子婦女的補償,但州議會拒絕他了的所有這些要求。該州參眾兩會在同月三十一日以壓倒性的票數,推翻州長先前在二十七日所為之否決,並使該法案立即生效。 根據舊州法,若麻州科學家想進行胚胎幹細胞研究,必須獲得地區檢察官批准。新法實施後,科學家不需等待地區檢察官同意後才能進行研究,但州衛生廳將有權管制過程。除此之外,這項新法和聯邦法一樣,禁止複製嬰兒。 美國各州對幹細胞研究的態度迥異,甚至可以說處於分裂狀態。有七個州禁止任何複製研究,十一個州禁止幹細胞研究。但是,加州在二○○四年率先透過法案支持胚胎幹細胞研究,還計劃在十年內從州預算中撥款三十億美元資助這項研究。麻州緊隨其後。紐約、康涅狄格、賓州等也準備放寬對幹細胞研究的限制。 支持胚胎幹細胞研究者紛紛希望,麻州能成為治療脊椎受傷和糖尿病、柏金森氏症等疾病的科學先進研究中心。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。