歐盟執行委員會(European Commission,下稱執委會)於2024年7月11日宣布與蘋果公司和解並接受蘋果公司提出的承諾,未來十年在歐洲經濟區(European Economic Area, EEA)內允許第三方行動錢包提供者存取iOS裝置的NFC(Near-Field-Communication)功能,並設有監督受託人(monitoring trustee)進行監督。
自2020年6月執委會對蘋果公司啟動反壟斷調查,並於2022年5月執委會提出聲明認為蘋果公司在iOS裝置行動錢包市場具有主導地位,對競爭對手產生排他性影響,涉及違反《歐盟運作條約》(Treaty on the Functioning of the European Union, TFEU)第102條禁止濫用市場地位規定。蘋果公司為解決涉及違法問題,於2024年1月承諾提供第三方行動錢包提供者和支付服務提供者應用程式介面(Application Programming Interfaces, APIs)存取iOS裝置的NFC功能,並經由執委會1個月的第三方意見諮詢後,蘋果公司根據該意見修改部分內容,並提出以下承諾:
● 提供終端設備支付功能。
● 取消存取NFC功能的資格條件。
● 允許第三方行動錢包提供者為存取NFC功能預先設置支付應用程式。
● 持續更新架構以符合行業標準。
● 允許開發者提示使用者設定預設支付應用程式並導向設定頁面。
● 縮短爭端解決期程。
● 由監督受託人提供獨立性及程序保證。
執委會認為蘋果公司提出的承諾能有效解決蘋果公司限制第三方行動錢包提供者在iOS裝置提供NFC支付功能的競爭,執委會與蘋果公司和解並承認該承諾對蘋果公司產生法律約束力,監督受託人將定期向執委會報告,執委會與蘋果公司和解並結束為期4年的調查,但蘋果公司仍須承擔《數位市場法》(Digital Markets Act)等其他法規之義務。
相較於Android系統開放NFC功能提供行動錢包存取,iOS系統對行動錢包存取NFC功能有所限制,澳洲競爭與消費者委員會(Australian Competition and Consumer Commission)及美國司法部對於蘋果公司壟斷iOS裝置的行動錢包市場也展開調查或訴訟,蘋果公司面臨行動錢包市場競爭的挑戰,在歐洲經濟區內可能掀起行動錢包市場競爭的蓬勃發展,是否帶動在其他國家或地區的法制政策改變,可持續觀察各國行動錢包市場動態。
為鼓勵綠色科技產業發展,美國商業部專利商標局(The U.S. Commerce Department's Patent and Trademark Office , 簡稱USPTO)宣布綠色科技與溫室氣體減量領航方案,USPTO表示,對於綠色科技與溫室氣體減量的專利申請案件,將給予加速審查(accelerate the examination)的優惠。美國商業部長Gary Locke表示,美國的競爭力繫於研發創新能力,協助綠色產業儘速得到專利保護將可以刺激是項產業發展。 除了經濟的誘因,行政上的便利也經常是政府用以推動政策的輔助工具,USPTO希望透過這項新措施,幫助相關產業的研發創新。而在研發創新上,廠商的生產方式或是產品如能更快速取得專利的保護,對於該產業的發展應有正面的效益。USPTO在2009年12月提出這項方案後,在2010年5月21日再次宣布將原方案所正面表列的專利類別(U.S. patent classifications, USPCs)刪除,亦即進一步擴大可申請案件的範圍。 美國在發展綠色科技的腳步上一直未曾停歇,除原有透過綠色公共採購(Green Public Procurement, GPP)來擴大此項產業市場,歐巴馬政府上台後更在2009年10月發布的13514號行政命令(Executive Order)要求聯邦機關訂定2020年以前溫室氣體排放減量的目標,實施策略上,政府機關採購目標以95%符合ENERGY STAR® 、FEMP、EPEAT等規格或認證產品優先。綠色公共採購提供的是市場面的誘因,此番USPTO提供的專利審查過程的加速,無異是給予綠色產業再一劑強心針。USPTO該方案執行期間以1年內3千件申請案為上限,此項措施如能有效刺激產業發展,值得加以觀察。
歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。 個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。 此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。
美國第9巡迴上訴法院於2015年7月6日宣布Multi Time Machine v. Amazon案的見解美國第9巡迴上訴法院(9th Circuit)於2015年7月6日對外宣布Multi Time Machine v. Amazon案的見解,其推翻地方法院看法,認定被告Amazon公司提供的服務有侵害原告Multi Time Machine公司商標權之虞。 本案原告Multi Time Machine公司是一家製作手錶的廠商,在被告Amazon公司的網站上有提供零售服務。原告認為被告網站提供之服務,可使消費者搜索網站內的物品,但其所得之結果(含圖片)卻容易令人混淆,如搜尋原告的MTM手錶(為Multi Time Machine之商標),會將商標權人及其他廠商的商品都包含在內,導致消費者誤認為其他廠商手錶也是由MTM製造,進而購買非原告公司生產之手錶。原告因而向地方法院提出訴訟,認為被告Amazon公司侵害其商標權,違反聯邦法典內之Lanham Act的第1114條(1)(a)及第1125條(a)(1)規定。但洛杉磯地方法院認為被告行為並未侵害商標權,原告不服故提起上訴。 第9巡迴上訴法院採用1979年AMF v. Sleekcraft Boats案認定之方式,並於2011年Network Automation v. Advanced System Concepts案後發展出的測試標準,用以判斷有無侵害商標權。其標準包含:1.商標的強度、2.商品近似或相關連程度、3.與商標的相似性、4.實際混淆之證據、5.銷售管道、6.消費者在意程度、7.被告意圖、8.擴展之可能性。上訴法院認為,本案除了3、5、8三項較無關外,其餘5項因素經法院研究結果,原告商品在被告網站上販售時,1、2、7於原告影響較大,而4、6是被告提供服務(即供消費者購買)時須在意的。因此,綜合判斷之結果,被告行為已可能侵害原告之商標權,故推翻地方法院之判決結果,發回地方法院續行審理,本案後續判決進展及結果實值持續觀察。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。