美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎

美國國防部(Department of Defense, DoD)於2024年6月25日發布「關鍵點:國防部資訊技術發展戰略」(Fulcrum:DoD Information Technology (IT) Advancement Strategy),將持續促進DoD之IT變革,並為未來奠定基礎。

本戰略描述作戰人員在推動IT方面應達成之目標與重要性,並列出提供聯合作戰IT能力、資訊網路與運算現代化、最佳化IT治理、栽培第一數位人力等四大目標(Line of Effort, LOE),簡述如下:

(1)提供聯合作戰IT能力(Provide Joint Warfighting IT Capabilities):在現今不斷變化且充滿競爭的全球環境中,該目標以使用者為中心,提供具功能性、可擴增、永續且安全之IT功能。並以改善作戰人員可用資訊為重點,以利在快節奏、多領域(multi-domain)作戰中獲得決策與競爭優勢。

(2)資訊網路與運算現代化(Modernize Information Networks and Compute):該目標著重於迅速滿足任務與商務需求,利用卓越技術與以資料為中心的零信任(Zero Trust)資通安全方法,提供安全且具更快資料傳輸速度、更低延遲與高度彈性的現代化網路。

(3)最佳化IT治理(Optimize IT Governance):該目標將提高傳送效率、節省成本,且透過從治理到資料獲取系統的簡化政策,以轉變治理制定更好的決策,包括使用強大資料功能。

(4)栽培頂尖的數位人才(Cultivate a Premier Digital Workforce):該目標將確保作戰人員為新興技術之布署做好準備,並持續致力於識別、招募、發展並留住最佳數位人才。其擴展DoD網路人力框架(DoD Cyber Workforce Framework, DCWF),著重於更廣義的數位人力,包括資料、人工智慧、軟體工程的工作角色。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9249&no=64&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
何謂「Spitzencluster-Wettbewerb」?

  Spitzencluster-Wettbewerb由德國聯邦教育與科學部(Bundesministerium für Bildung und Forschung,BMBF)自2007年起開始推行,屬該國高科技戰略2020(hightech-strategie 2020)之政策配套措施之一,更是歐盟發展歐洲研發區位計畫(European Research Area)之一環。所謂聚落係建立在德國傳統工業區位分布上,利用群聚效應因應產業技術發展的複雜問題(產業問題非單一技術可解決),使各具專長之學研機構與企業共同分享產業問題研議出解決方案,分擔研發風險與成本等,增強合作效率,促進產業創新及升級。聚落多以成立協會(association)為主,平均每一聚落有近70個企業參與,原則上開放跨國參與者參與聚落之產學合作,並對會員收取會費。   本計畫作為重要的區域產學研合作計畫,乃承襲自德國過去不斷推動的區域產學研合作計畫,其特色是採取競爭方式選出德國境內優秀之聚落,並補助其相關研發計畫。自2007年至2015年間,已有三次選拔,並選出共15個領先聚落,分別涉及領域橫跨航太、資通訊、能源、生技等技術發展。至2015年為止總計已補助超過1300個計畫。2015-2017年將規劃有三次選拔,每回合挑選至多10個聚落獲得補助。目前本計畫已補助3.6億歐元預算,至2017年底將再投入5億歐元預算。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

什麼是「商標的反向混淆誤認」?

  2008年,連鎖咖啡店85度C告85.1度C商標侵權,台北地院以85.1度C影響了85度C的商譽和正常收益,判賠新台幣47萬元。-這是商標侵權爭訟常見「商標混淆」的具體場景,也是所謂的「正向混淆」(Direct Confusion)。試想,現在主客易位,85.1度C 是間小店,耕耘許久仍沒沒無聞;而85度C推出即一炮而紅、門庭若市。85度C是後來者,他是否可以商標混淆為由,主張85.1度C影響了其商譽和正常收益?這個「後商標比前商標強勢」的假設就涉及「反向混淆」(Reverse Confusion)。   所謂「商標的反向混淆誤認」,按經濟部智慧財產局〈行政法院105年度判字第465號判決研析〉,係指:「後商標因較諸前商標廣為消費者所知悉,消費者反而誤以為前商標係仿冒後商標,或誤認為前商標與後商標係來自同一來源,或誤認兩商標之使用人間存在關係企業、授權、加盟或其他類似關係。」   美國於1976年之Big O Tire Dealers, INC. v. Goodyear Tire & Rubber Co.案首度在侵害商標權訴訟承認有反向混淆之適用。然而,由於美國採「使用主義」(First to use),商標之認定係以使用的先後判斷之。而我國採註冊主義,商標先後以申請註冊的時間判斷之。我國最高行政法院105年度判字第465號判決則明確表示商標法明文規範商標註冊申請乃採先申請主義,排除反向混淆理論之適用。

比利時法院要求Google移除新聞轉載連結

  儘管類似 Google News 提供新聞連結的作法在網路上屢見不鮮, Google 也認為其行為完全合法,但 比利時布魯塞爾法院於 9 月 5 日 作出的判決,仍要求 Google 在沒有獲得對方允許或支付相應費用的情況下,應 停止從法語報紙上節錄新聞片段,否則將會面臨每天一百萬歐元的罰款。 Google 雖因此暫時移除了相關新聞的轉載連結,卻打算對此判決提起上訴。   該案法官指出, Google 在這些報章媒體網站更新相關新聞後,才在 Google 網站上提供轉載內容,法院認為這不但侵害了作者的著作權,且違反比利時有關資料庫的法律。除了移除轉載連結外,法院也要求 Google 必須在 Google 比利時網站上公布該判決內容,否則另須繳交每日五十萬歐元的罰款。   這起控告 Google 的訴訟是由比利時出版集團 Copiepresse 所提起的,該集團代表比利時境內多家法語及德語報社,亦為一管理比利時法語及德語媒體著作權的專門機構。

TOP