美國聯邦總務署(General Service Administration)於2024年6月27日發布《新興科技優先審查架構》(Emerging Technologies Prioritization Framework),該架構係為回應拜登總統針對AI安全所提出之第14110號行政命令,而在「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下簡稱FedRAMP)底下所設置之措施。
一般而言,雲端服務供應商(cloud service providers)若欲將其產品提供予政府單位使用,需依FedRAMP相關規範等候審查。《新興科技優先審查架構》則例外開放,使提供「新興科技」產品之雲端服務供應商得視情況優先審查。
現階段《新興科技優先審查架構》所定義之「新興科技」係為提供下列四種功能的生成式AI技術:
1.聊天介面(chat interface):提供對話式聊天介面的產品。允許用戶輸入提示詞(prompts),然後利用大型語言模型產出內容。
2.程式碼生成與除錯工具(code generation and debugging tools):軟體開發人員用來協助他們開發和除錯軟體的工具。
3.圖片生成(prompt-based image generators):能根據使用者輸入之文字或圖像而產生新圖像或影像的產品。
4.通用應用程式介面(general purpose API):基於API技術將前述三項功能加以整合的產品。
美國政府為挑選最具影響力的產品,要求雲端服務供應商繳交相關資料以利審查,例如公開的模型卡(model card)。模型卡應詳細說明模型的細節、用途、偏見和風險,以及資料、流程和參數等訓練細節。此外,模型卡應包含評估因素、指標和結果,包括所使用的評估基準。
《新興科技優先審查架構》第一波的申請開放至2024年8月31日,且FedRAMP將於9月30日宣布優先名單。這項措施將使生成式AI技術能夠以更快的速度被導入政府服務之中。
為確保歐洲民眾於健康醫療方面之利益,歐洲製藥工業協會聯合會(European Federal Pharnaceutical Industrial Association;簡稱EFPIA)於2009年2月17日,向歐洲議會(European Parliament)提出建議,並敦促其應儘速通過歐盟執委會(European Commission)於去年年底所提出一項關於醫藥品安全、創新與易近用性之議案。而一位業界代表Günter Verheugen於當(17)日會面後指出:「此次會面,主要是希望能就新近執委會所提交之醫藥品管理整體配套方案(Pharmaceutical Package),進行初步意見之交換與討論」。 由於保障歐盟境內民眾之健康安全,實乃歐盟決策者(Decision-makers)所應掮負之重要責任,故EFPIA總幹事Brian Ager於此次會面交流之前,亦曾高聲向歐洲議會與各會員國家呼籲,應優先將病患安全(Patient Safety)議題納入考量,並採取果斷之行動;同時,其也指明,歐洲醫藥各界為尋求各種可能落實之方法,先前早已經歷過各個階段,並遲延了決策做成之時機;故,此次會面,除要為執委會提案之審查,奠定啟動之基外,亦盼能再次集聚並挹注歐洲醫藥各界之能量,於保護歐洲人民健康安全相關之行動當中。 關於歐盟執委會於去(2008)年底所提出之議案,由於其中有多項內容對歐洲醫藥各界之影響實廣且深;因此,該項提案目前業已廣泛地受到EFPIA與業者之重視。此外,就此項醫藥品管理整體配套方案中擬採行之具體立法規範措施,實包含如後3個面向:首先,是欲透過規範擬提昇藥物警戒(Pharmacovigilance)方法之現代化;其次,強化管制規範以減少假藥滲入歐洲整體醫藥品供應鏈之機會;最後,則是要要提供高品質之健康與醫藥品相關資訊給有需要之病患或大眾近用(Access)等。 由此可知,未來歐盟整體醫藥品管理立法方向,將分由3個不同之角度出發;並同時朝「改善歐洲大眾用藥安全」之目標前進;不過,在進一步進行條文化之前,前述由執委會所提出之醫藥品管理整體配套方案,將會先交由歐洲議會與歐盟理事會官員共同進行初步之討論。
歐盟執委會擬改革現行專利訴訟制度,並希望能減省歐洲境內中小企業營運成本為求能妥善管理現暨有之歐洲專利與健全歐洲共同體專利制度,歐盟執委會(Commission)正致力於尋求各成員國同意,欲滙集境內能量,來建、整出一套「單一化」專利訴訟制度(Unified Patent Litigation System;簡稱UPLS),以解決境內智財爭議與相關衍生問題,來達到『鼓勵私人發明』及『刺激歐洲境內中小型企業 (Small & Medium Enterprises;簡稱SMEs)持續成長』等目標」。 目前,就已取得歐洲專利局(European Patent Office)所核發專利之專利權人而言,其雖可逐一於歐盟各成員國家中,利用該國專利訴訟程序來保障其自身之發明;然,由於利用不同成員國家之司法系統興訟,甚可能因各類商業習慣或其他種種因素,而致生不同之審判結果;因此,於現行歐洲專利訴訟制度下,除時間與成本外,業者亦須面對司法裁判上之高度不確定性風險。一位負責國際市場暨服務事務官員Charlie McCreevy指出:「已有許多業者表示,歐洲現行之專利訴訟制度,實相當地複雜且繁瑣;且於訴訟進行過程中,除須繳納許多費用外;至取得判決前,其所耗費之時間,亦相當冗長」。 有鑑於此,執委會正擬儘快協調各會員國並統整出一套單一化之專利訴訟制度,以提升訴訟結果之可預見性(Predictability)並減輕訴訟成本。大體而言,該項UPLS制度,應可為歐洲專利權人帶來如後數項利益:(1)提升專利訴訟結果之法律上確定性、(2)減輕訴訟成本與(3)促進專利訴訟制度之商業性近用等;而一位執委會官員補充:「事實上,建置單一化專利法院與訴訟系統,其目的,無非是欲借強化解決智財爭議機制之方法,來達到『鼓勵私人發明』及『刺激歐洲境內中小型企業持續成長』等目標」。 最後,根據一份由德國慕尼黑大學學者Dietmar Harhoff所提出之分析報告顯示,倘若能透過該項措施來避免「重複專利侵害訴訟」或「訴訟撤回」等問題,估計每年將可為業者省下高達1億4千8百萬至2億8千9百萬歐元之專利訴訟費用。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
香港公告金融科技監管沙盒2.0版、保險科技沙盒以及證監會監管沙盒在香港金融管理局(Hong Kong Monetary Authority, HKMA)於2016年9月推出金融科技監管沙盒(Fintech Supervisory Sandbox, FSS)滿一年後,於今年9月29日再公布2.0升級版。而香港保險業監管局(Insurance Authority, IA)同時發布保險科技沙盒(Insurtech Sandbox),證券及期貨事務監察委員會(Securities and Futures Commission, SFC)亦公告證監會監管沙盒(SFC Regulatory Sandbox),初步完備香港金融領域沙盒制度之建立。 於金融科技監管沙盒2.0版中,香港金融管理局為加強金融科技公司與HKMA連繫機制,將成立金融科技監管聊天室(Fintech Supervisory Chatroom),改變最初金融科技公司僅能透過銀行窗口與HKMA進行試驗商品相關聯繫,造成程序不便、資訊不流通等問題,2.0版後金融科技公司可透過HKMA隸屬之金融科技監管聊天室進行意見回饋。並且由於香港針對金融科技、保險、證券及期貨領域推出三種沙盒機制,故推出「一點通」之一站式便民服務,提供企業選擇沙盒並得以和各機關進行相互協調,此次改革將於年底作業完成。 而IA為促進保險科技發展,推出保險科技沙盒,對於保險公司計畫在香港推出的創新技術不確定是否符合香港法規,給予受授權保險公司在沙盒機制內進行沙盒試驗,在沙盒試驗中,主管機關得隨時對保險公司之風險控管做查核,並且消費者有隨時退出試驗並給予補償機制,IA亦可針對不符合之試驗計劃宣告中止。 另外,SFC開放合資格之企業提供沙盒試驗,所謂「合資格之企業」是指經由香港《證券及期貨條例》規範而設立之持照企業或新創公司,同時該公司必須使用創新科技並為投資者帶來更多優質產品服務,並受惠於香港金融服務業者。並且為保護投資者權益,除申請公司應有給予投資者退出機制與提供賠償方式外,並應揭露潛在風險。若最後申請公司證明其試驗客體可靠且符合目的,可向SFC申請走出沙盒機制,並對外營運。