美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括:

1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。

2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。

3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。

4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。

5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。

6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。

7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。

8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。

9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。

10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。

11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。

12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。

  為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

相關連結
※ 美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9263&no=55&tp=1 (最後瀏覽日:2025/12/21)
引註此篇文章
你可能還會想看
從Advantek 與Walk-Long寵物屋之爭了解美國聯邦巡迴上訴法院之設計專利禁反言判斷原則

  一般實務上較熟悉發明或新型專利在申請過程中,調修權利範圍與其後訴訟禁反言之關聯性,然而在設計專利申請過程中,圖式的調修或圖式組合的選取對往後訴訟在權利範圍主張所造成的影響,在實務上則相對不明確。而美國聯邦巡迴上訴法院(the United States Court of Appeals for the Federal Circuit, 簡稱CAFC)在2018年8月1日對「Advantek Mktg., Inc. v. Shanghai Walk-Long Tools Co., Ltd.」一案作出判決,依循了設計專利禁反言之判斷原則,這也是CAFC根據此判斷原則所作出的第二個判決。   Advantek Mktg., Inc.(後稱Advantek)擁有「寵物屋(Gazebo)」美國設計專利(D715,006,後稱系爭專利),其認為Walk-Long Tool Co., Ltd.(後稱Walk-Long)之「有蓋寵物屋」產品(後稱系爭產品)侵權,因此在2016年提出專利侵權訴訟。一審中,Walk-Long指出Advantek在專利審查過程中選擇放棄「附蓋寵物屋」之圖式,是故意放棄專利範圍(intentionally surrendered patent claim scope)以取得專利,而根據禁反言原則認為Advantek申請階段已放棄附蓋之設計態樣因此無法主張權利,地方法院認同Walk-Long。   Advantek提起上訴,CAFC根據其於2014年判決中所提出之設計專利禁反言判斷原則:(1)是否有放棄專利範圍;(2) 該放棄是否以專利性為由而提出;(3)被控侵權產品是否落入該放棄之範圍中,認為系爭產品並不符合第三點,即未落入所放棄之圖式範圍,亦即系爭專利之範圍為寵物屋骨架結構(skeletal structure),不論系爭產品是否有其他特徵(是否附有蓋)皆落入系爭專利之權利範圍;此外,根據2016年最高法院在「Samsung v. Apple」案中針對複數構件之產品認定專利侵權範圍時,是以部分構件而非完整產品進行檢視,亦即系爭產品僅須一部分與系爭專利一致便落入專利範圍,而非以產品整體視之,並據此兩觀點駁回地院判決。   本案重點在於,專利申請過程中審查委員發現一案多實施例的情況提出選取要求(restriction requirement),當申請人選取部分圖式為產品之核心設計形成較大的專利範圍(如本案選擇的寵物屋骨架結構),並不會造成禁反言,當禁反言在調修或選取時限縮專利範圍才會成立。此外,建議設計專利之申請範圍係以核心設計或主要設計特徵而非納入產品之整體設計,如此未來主張權利範圍將相對寬廣。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

歐盟通過反脅迫規則,將針對他國的經濟脅迫手段採取反制措施

歐盟理事會(European Council)表示已與歐盟執委會(European Commission,以下簡稱「執委會」)、議會(European Parliament)於2023年11月22日完成《保護歐盟及其成員國免受第三國經濟脅迫規則》(Regulation on the protection of the Union and its Member States from economic coercion by third countries,以下簡稱「反脅迫規則」)之立法流程,並將於2023年12月27日正式施行生效。 該法起源於中國大陸於2021年為抗議立陶宛(Lithuania)同意我國政府以「臺灣」名義在其首都維爾紐斯(Vilnius)設立代表處,停止輸入多項產品,導致立陶宛對中貿易額大幅降低。歐盟為避免特定國家持續利用此種經濟脅迫手段影響歐盟交易市場與會員國之主權,決定立法採行反制措施,並於2021年之貿易政策回顧(2021 Trade Policy Review)公布《反脅迫規則》之立法框架。 根據《反脅迫規則》,執委會得根據會員國、歐盟議會及其他經濟聯盟所提供之資訊進行職權(ex officio)調查;亦可依照受脅迫之會員國或企業的請求進行調查。在調查階段,執委會會在4個月內判斷特定國家之行為是否確實造成經濟脅迫,若確實存在,將進一步評估其對歐盟帶來之影響。調查完成後,若他國政府確實對歐盟成員國或企業實施經濟脅迫手段,執委會將提交報告與理事會進行決議,通過後,執委會將先採行不干涉措施(non-interventionist measures),與實施經濟脅迫手段之國家進行協商,並要求賠償因經濟脅迫而產生的損害。若採行不干涉措施後仍無改善,執委會得考慮採行干涉措施(interventionist measures),包含但不限於限制特定企業進入歐盟市場與投標政府採購案;終止對特定國家的關稅優惠,並課予額外之關稅等,以阻止該特定國家繼續干擾歐盟經濟體。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國國家寬頻計畫簡介

TOP