美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括:
1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。
2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。
3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。
4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。
5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。
6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。
7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。
8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。
9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。
10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。
11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。
12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。
為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
德國聯邦內閣政府決議通過「電信終端設備連接與自由選擇法草案 (Gesetz zur Auswahl und zum Anschluss von Telekommunikationsendgeräten)」為防止網路服務企業,在提供網路服務上替客戶連接寬頻網路(Breitbandanschluss)時,僅准許使用自家公司提供之路由器(Router),進而導致路由器或數據機(Modem)市場之壟斷狀況,違反市場自由競爭,德國聯邦內閣政府於2015年8月12日決議通過德國聯邦經濟暨能源部(Bundesministerium für Wirtschaft und Energie)於2015年2月25日所提出之「電信終端設備連接與自由選擇法草案」(Gesetz zur Auswahl und zum Anschluss von Telekommunikationsendgeräten)。 透過該草案,德國廣播電台與電信發射設施法(Gesetz über Funkanlagen und Telekommunikationsendeeinrichtungen)新增條文,以確保所有的終端設備(Endgeräten)列為市場自由化之對象。透過法定市場自由化的規範亦達成歐盟貨物公開及自由流通(free movement of goods)之原則。 該草案亦修定德國電信法(Telekommunikationsgesetz),「客戶之網際網路接取」現被定義為「被動式網絡終端點(passiver Netzabschlusspunkt)」。亦即,網路的架構設定與規劃,以往通常為電信業者所指定及管理,並包括路由器在其中,然而透過新法之修訂,已將路由器排除在被動式網絡終端點外,反而明確定義為積極終端設備(aktives Endgerät)。電信業者的管轄管理權限,以草案之修訂在路由器端前就會被設限。因此,讓網際網路使用者自己可使用自己裝置的路由器來定義自身的積極連接點(aktives Zugangspunkt)。 然而,網路營運者仍然可以提供其客戶終端設備,像是路由器或網路數據機,但透過該草案,客戶現可擁有終端產品的選擇權,而不致被迫使用被指定之網路終端設備。
美國聯邦地方法院駁回臨床試驗軟體公司Medidata對競爭對手Veeva的營業秘密訴訟美國紐約南區聯邦地方法院(S.D.N.Y.)於2022年7月15日駁回了臨床試驗軟體公司Medidata Solutions Inc. (以下簡稱Medidata公司)控告競爭對手Veeva Systems Inc. (以下簡稱Veeva公司)竊取其營業秘密的請求。 原告Medidata公司於2017年1月指控被告Veeva公司陸續挖角其數名離職員工,部份員工離職時私自拷貝公司檔案,其中包含原告的產品研發、商業策略等營業秘密,而被告根據這些資訊開發了和原告相似的軟體,造成其重大損害,因此向被告請求4.5億美元的損害賠償。 被告Veeva公司抗辯雖然這些員工離職時私自保留原告的檔案,但原告在訴訟中並未明確說明哪些屬於該公司的營業秘密,亦即未特定營業秘密標的;此外,即便這些離職員工自行保留的檔案中有包含原告所稱之營業秘密,但原告提出的證據不足以證明被告有不當取用(misappropriation)其營業秘密,僅根據被告有僱用原告離職員工等事實,即推論被告有不當取用。原告試圖透過此模糊和毫無根據的主張,限制產業的創新、競爭、人才流動。 本案歷經五年的纏訟,法院最終駁回原告請求。法官指出,原告在整個訴訟過程中並未明確定義哪些資訊屬於營業秘密,原告似乎認為任何資訊皆屬於其營業秘密,這樣的主張無異於代表任何公司永遠無法挖角其他公司的員工,因為這些員工到新公司任職後所說的任何話,都會間接地揭露他們在之前工作中所學習到的事情,因此駁回原告之訴。 從本案可以觀察到,企業應定期盤點公司內部資訊,明確界定營業秘密範圍,並落實管理及妥善留存相關證據,發生侵害營業秘密爭議時才能有效舉證。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」