美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括:

1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。

2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。

3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。

4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。

5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。

6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。

7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。

8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。

9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。

10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。

11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。

12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。

  為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

相關連結
※ 美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9263&no=55&tp=1 (最後瀏覽日:2025/12/27)
引註此篇文章
你可能還會想看
歐盟公布競爭與創新綱要計畫

  歐盟最近公布新通過的競爭與創新綱要計畫( Competitiveness and Innovation Framework Programme 2007-2013 , 簡稱: CIFP (2007-2013) ),預計自今( 2006 )年 11 月 29 日 生效適用 。 CIPF (2007-2013) 旨在強化歐盟競爭與創新的能量,以期透過均衡的經濟成長,促進知識社會與永續發展。   CIFP (2007-2013) 根據歐盟現今的發展策略- Lisbon Strategy ,亦是將重點放在如何協助中小型企業運用其創新的潛能,開發更高品質的產品。由於去年歐盟理事會重新定位 Lisbon Strategy 的重點在於激勵企業家精神、確保新創事業可獲得充份的風險資本挹注、鼓勵並引導融入環境友善精神的創新( eco-innovation )、善用 ICT 技術、促進資源的永續利用,故而 CIPF (2007-2013) 的計畫重點也放在如何落實前述政策目標,以使「競爭與創新」、「知識經濟」以及「永續發展」得以齊頭並進。   另 CIPF (2007-2013) 在第七期研發綱要架構( Seventh Framework Programme for research and technological development )執行期間( 2007-2013 )也將與其相輔相成,不過 CIPF (2007-2013) 重點不在研發補助,而是希望在研究與創新之間搭建橋樑,同時鼓勵各種形式的創新利用。舉例而言,如何協助將第七期研發綱要的成果進一步透過技術移轉方式鼓勵其商業化利用,即是 CIPF (2007-2013) 所要達到的任務之一,不過手段上 CIPF (2007-2013) 的經費主要會用於如何解決研究與創新之間的市場失靈問題。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

德國聯邦內政部對歐盟部長會議「資料保護基本規則」(Datenschutz-Grundverordnung)發表意見書,並提出修法建議

  德國聯邦內政部資料保護與資訊自由委員會於2015年8月15日針對歐盟部長會議於6月15日所確立對歐盟資料保護基本規則(Datenschutz-Grundverordnung)的基本立場,若依該立場則(1)資料處理目的之變更理由將變得更寬泛(2)對資訊保有機構所提出的申請程序以有償為原則(3)蒐集個人資料應遵循之規範過於簡略等,該委員會提出批評與建議。   該委員會會議認為有必要改進歐盟「資料保護基本規則」,令其更周延,更呼籲對資料保護基本規則的修正,應循以下重點及原則進行: 1.資訊節約原則應該堅持   多年來在德國法已確立的資訊節約原則(Datensparsamkeit)和資訊避免原則(Datenvermeidung),應予維持。因此資料保護基本規則中,須清楚詳盡地規定節約原則和資訊避免原則。 2.目的明確性原則的要求不能退縮   目的明確性原則(der Grundsatz der Zweckbindung)之功能,係為資料處理之透明性和可預見性,該原則亦強化了當事人的資訊自主權,使其得以信賴個人資料之處理,僅限於所申請之目的內進行。   故若依理事會建議之規範,使資料處理目的之變更,得以更寬泛的理由進行,將背棄歐盟基本權利憲章中之目的明確性原則。 3.即令個人同意書亦不得拋棄資訊主權   資訊自決權,意謂原則上個人可以用同意的方式,決定個人資訊的使用和拋棄。但即使有清楚明確的意思表示,該同意亦僅係保障資訊主權的重要因素之一。另就同意書而言,若如歐盟部長理事會所建議者,只需清楚明確即可,則這種方式於保護上是不夠充分的。 4.個人資料建檔必須有效地限制   該會議重申,嚴格規範對個人資料的蒐集有其必要性。為個人檔案之整合與充分使用設置嚴格的界限,現有規定太過簡略而遭到批評。 5.有效的資訊保護需要歐盟層級的企業與官署的資料保護專員   對於資訊保護監督的有效性,在德國已確立之官方與私人企業的資訊保護專員制度係重要之一環。應致力於歐盟層級公/私機構資訊保護專員制度在整個歐洲的推動。 6. 資訊傳輸第三國官署和法院需要更嚴格的監督   近期的隱私醜聞之後,目前亟需對歐洲公民個人資料給予更妥善的保護,以對抗來自第三國的機構。此意見書贊同歐盟議會的建議,即以第三國法院的判決和行政機關的決議,要求對個人資訊的披露,在歐盟之中僅能基於國際公約中機關互助和法律協助之規定,原則上予以承認與執行。

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP