美國羅德島州通過《羅德島資料透明度與隱私保護法》,保護個人資料不被濫用,該法案將於2026年1月1日生效

隨著網路蓬勃發展,個人資料之蒐集、處理及利用越來越普遍,同時也造成資料洩漏和濫用的問題日益嚴重,進而對隱私和個人資料構成侵害與威脅,為保障人民隱私和增強資料透明度,羅德島州州議會於2024年通過了一項具有里程碑意義的法律—《羅德島資料透明度與隱私保護法》(Rhode Island Data Transparency and Privacy Protection Act)。其核心內容包括以下幾個方面:

一、 適用對象:於羅德島州州內經營商業之營利組織(下簡稱企業),或主要生產製造商品、提供服務予該州居民之企業,且:

1. 在前一年度控制或處理超過三萬五千筆個人資料(personally identifiable information)者,但單純為完成付款交易之資料除外。

2. 控制或處理超過一萬筆個人資料,且總營收超過百分之二十係源自於銷售個人資料者。

二、 資料蒐集企業與資料當事人權利義務:

1. 選擇同意與退出權:前開適用對象應賦予資料當事人即消費者就其個人資料之蒐集、處理,行使選擇同意權(opt in)與退出權(opt out)。

2. 資料蒐集與利用透明度:要求企業蒐集個資前,須明確告知資料當事人蒐集目的、利用範圍以及可能的資料共享對象,並取得其同意。

3. 控制權:資料當事人有權向企業請求查詢、修改及刪除自己的資料,企業在接到請求後,必須即時處理該請求,並於45天之法定期限內准駁其請求;必要時得於通知當事人合理事由後,展延一次。

4. 安全維護措施:企業必須採取適當之安全維護措施來保護個人資料不受未經授權的近用、洩漏、竄改或毀損。前述措施,包括但不限於資料加密、權限管控等技術上管控措施。

5. 資料保護評估:企業須就「對消費者傷害風險較高」活動進行評估並保存文件化紀錄,包括:

(1) 為精準行銷之目的(Targeted Advertising);

(2) 銷售個人資料;

(3) 為資料剖析之目的處理個人資料,且具合理可預見的風險將可能對消費者之財務、身體或名譽造成不公平或欺騙性的待遇,或非法的衝擊影響。

《羅德島資料透明度與隱私保護法》強化企業對資料隱私保護之責任,並督促其遵守法律要求。預計施行後將能加強對資料主體個人資料知情權、控制權、透明度及資料安全之保障。

相關連結
你可能會想參加
※ 美國羅德島州通過《羅德島資料透明度與隱私保護法》,保護個人資料不被濫用,該法案將於2026年1月1日生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9277&no=67&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
美國聯邦地方法院就Sanford Wallace散佈間諜軟體案作成判決

  美國聯邦交易委員會指控 Sanford Wallace 氏及其所經營的 Smartbot.Net 公司,利用 IE 瀏覽器的安全漏洞散佈間諜軟體一案,日前新罕布夏州聯邦地方法院作成判決。   被告散佈之軟體會將受害者的光碟機托盤彈出,同時在螢幕顯示「最後警告」等字樣,附帶一則訊息告訴受害者,「如果您面臨光碟機托盤彈出的狀況,代表間諜軟體已經入侵您的電腦系統,安全已經出現漏洞,敬請立刻下載本公司出品,以資因應!」趁機推銷該公司出品,定價 30 美元之 Spy Wiper 跟 Spy Deleter 軟體,號稱足以因應間諜軟體相關問題。實際上,被告未經用戶同意逕予散佈植入的,性質上即係間諜軟體,不僅會偷偷更改用戶電腦的設定,持續不斷跳出廣告視窗,造成用戶之電腦運作不順或者當機,還可能洩漏電腦裡頭所儲存的資料。   日前新罕布夏州聯邦地方法院就本件作成判決,命被告必須償還不法取得的利益,共計 408 萬餘美元;不得繼續傳輸散佈間諜軟體至用戶之個人電腦;不得未經同意逕行傳輸任何軟體予用戶;不得將用戶之電腦導向彼等並未打算瀏覽或連結的網站或伺服器;不得更動用戶瀏覽器所預設的首頁;不得更動或調整搜尋引擎的功能或成果。

藥品專利聯盟和WIPO將為永續發展及COVID-19更進一步共享策略和資訊

  藥品專利聯盟(Medicines Patent Pool,下簡稱MPP)2021年2月宣布將和世界智慧財產權組織(World Intellectual Property Organization,下簡稱WIPO)加強合作,因應COVID-19及推動《聯合國2030永續發展議程》(United Nations 2030 Agenda for Sustainable Development)。MPP是聯合國支援的公衛組織,透過與政府、國際組織、企業、患者團體等對象合作,對所需藥品進行排序,並和藥品專利權人簽署協議,將其授權之智財權納入專利庫,以鼓勵製造學名藥和開發新配方,促進中低收入國家的救命藥品取得與研發。   雙方將在以下領域共同合作: 一、探索促進以中低收入國家為主的COVID-19醫療技術創新及對應之智財管理策略,並在網頁上共享資訊與工具。 二、和各國專利局合作,透過連結PATENTSCOPE、Pat-INFORMED及MedsPaL等資料庫,提高關鍵藥品的專利透明度和收集資訊,並在各論壇呈現合作成果。 三、安排授權和技術移轉相關活動,包含為WIPO成員國提供的技術支援、WIPO中小企業暨創業支助司(WIPO’s SMEs and Entrepreneurship Support Division)和WIPO學術機構(WIPO Academy)執行的活動和計劃等。 四、在專利法常設委員會(Standing Committee on the Law of Patents,SCP)共享資訊:應WIPO成員國要求,介紹MPP的業務、專利和授權資料庫MedsPaL。 五、為支持被忽視的熱帶疾病(neglected tropical diseases,NTDs)、瘧疾和肺結核的早期研發,將定期協商並在網頁提供相關連結。 六、探索能進一步納入MPP協議中的爭端解決條款。   近來MPP更邀請WIPO以無表決權的觀察員身份參與理事會,雙方期望本次合作能為大眾帶來更多的利益。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

促進頻譜使用效率-美國啟動獎勵拍賣機制

TOP