金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。
報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。
在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。
若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。
報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
SOPA法案,全名「禁止網路盜版法案(The Stop Online Privacy Act)」,是於2011年10月26日由美國眾議員Lamar Smith所提出,主要支持團體包括美國「娛樂軟體協會(the Entertainment Software Association)」、網路域名公司GoDaddy.com、「美國動畫協會(the Motion Picture Association of America)」以及「美國商會(United States Chamber of Commerce)」等等。另外一個類似的法案為美國參議院於2011年5月提交的「保護知識產權法案」,簡稱PIPA(Preventing Real Online Threats to Economic Creativity and Theft of Intellectual Property Act),該法案原預訂於2012年1月24日交付表決。 2012年1月18日,為了表明對SOPA的反對立場,美國各網站發起了關站的行動,包括Google、Wikipedia等這些大型網站皆參與了抗議行動(抗議行動的參與網站名單可參考下述網址: http://sopastrike.com/)。美國總統歐巴馬也於今年一月公開表明他不會支持SOPA以及類似的法案,主因為該法案箝制了資訊流的自由發展。白宮於官方部落格表示「保護線上智慧財產權的重要任務不可危害網路的開放以及創新發展」、「任何打擊線上盜版的努力必須避免線上審查對合法活動所造成的風險,並避免阻礙了商業的創新發展」、「我們必須避免創造新的網路安全風險或者是瓦解網路的基礎架構」、「期許並鼓勵所有的私人團體,包括網路內容創作人以及網路平台提供人,共同努力,採取自願性的措施以及最佳作法去減少線上盜版」,但是部落格中的聲明也指出,線上盜版已經是危害美國經濟的一個重要問題,它危害了中產階級的工作,並且危害了具有創造力以及創新力的美國公司以及企業。由於反對的浪潮,SOPA以及PIPA法案於今年1月20日正式地遭到議院擱置。 SOPA的立法主要是用來打擊國外販售仿冒品的網站以及提供非法下載影音軟體系統的網站,俗稱「海盜灣(pirate bay)」,使用人在這些網站只要輸入影集或者是電影名稱就可以免費下載收看。這些海盜灣由於伺服器不在美國境內所以難以管制,但是透過SOPA,美國政府可以藉著管制美國的網路服務者去切斷這些海盜灣在美國提供服務的生路。依照SOPA,Google將被禁止在其搜尋結果中顯示這些海盜灣,PayPal也將被禁止提供資金傳輸服務與這些被認定有侵權事實的業者。 事實上,著作權的侵權行為原本就是非法的,在此之前已有「數位千禧年著作權法案(the 1998 Digital Millennium Copyright Act,簡稱DMCA)」提供執行措施。依照本法,舉例說明,假設歌曲創作人發現有人非法在YouTube上上傳其享有著作權的歌曲,著作權人可以要求YouTube將之下架,這樣的要求稱為「DMCA 投訴公告(DMCA warning)」。光是2011年,Google就收到了約五百萬筆侵權下架的要求,若確定要求為合法,Google一般而言會在六個小時之內將之下架。問題在於DMCA投訴公告對於美國國外的網站並無法發揮其預期的效力。 但是類似YouTube這類的網站經營者則擔心,SOPA可能帶來網站營運者必須負擔審查使用人所上傳的檔案是否有侵權事實義務的負面效應。依照SOPA,任何支付服務或者是廣告營運主都需要提供一個管道供第三人檢舉「偷竊美國財產」的使用人,一遭檢舉,營運主就有義務在五天之內切斷其服務。雖然亂檢舉有刑事責任,但是是否無侵權行為的舉證責任則需要受控告者自行負擔,而許多小網站以及非營利性網站根本無力去負擔龐大的訴訟費用。另外,反對者認為SOPA對於「搜尋引擎(internet search engine)」以及「國外侵權網站(foreign infringing site)」的定義過於廣泛,在本法之下,維基百科也會被定義為「搜尋引擎」,並有義務在任何美國法院的要求下去移除「國外侵權網站」的有關聯結,否則將會被視為助長侵權行為並面臨「藐視法庭罪」,這將造成言論自由箝制的相關問題,除此也會大量增加維基百科的營運成本。業者多表示肯認SOPA的立意並表示願意合作,但是業者表示SOPA過於廣泛模糊的法規文字將可能會流於網站內容的審查並造成無法控制的後果。反對者指出,SOPA的影響範圍無法預測,網站內容若只是部分有侵權疑慮,可能整個網站都無法出現在搜尋引擎的搜尋結果中。「電子前哨基金會(Electronic Frontier Foundation, EFF)」指出,類似Facebook或YouTube這類由使用者自創內容的網站,未來可能都要被迫自行去監管網站內容,將大量增加營運成本。另一方面而言,SOPA賦予業者只要具有合理懷疑就可以封鎖使用者,這將會成為大公司用來打壓潛在競爭者並迴避反托拉斯法的手段。
日本數位市場競爭中期展望報告提出數位市場競爭短中期策略日本數位市場競爭本部(デジタル市場競争本部)於2020年6月發布了「數位市場競爭中期展望報告」(デジタル市場競争に係る中期展望レポート案),該報告認為大型數位平台業者透過龐大的用戶資料,不斷地(1)擴大並連結用戶、(2)垂直整合上下游產業並(3)從虛擬鎖定實體的銷售,對市場形成動態競爭(ダイナミック競争)結果。此一結果將導致數位市場極易形成掠奪性定價或併購的風險、資料集中的風險、資料可靠性的風險,甚至是個人價值判斷的風險。 為促進數位市場的治理與信任,該報告提出了以下短期與中長期的政策方向: 鼓勵企業數位轉型以增加數位市場的多樣性:推廣數位轉型指標、擴大沙盒制度適用、加速數位政府戰略。 建立數位市場競爭制度:運用經濟分析強化競爭管制、推動《數位平臺交易透明法》(デジタルプラットフォーム取引透明化法)法制化、建立大型數位平台調查機制。 建構去中心化的資料治理技術:透過資料持有、交換的「去人工干預」,形成一個可信任的網路世界。 該報告已於2020年8月7日完成公眾意見募集,預計於2020年年底前提出最終報告。目前日本新經濟聯盟認為,高頻率的競爭策略以及智慧化交易模式下的反壟斷政策,除了不正競爭的禁止外,政府更應著重在透明化檢視機制的建立。此外報告目前並未處理到平台資料治理的課題,聯盟對此認為政府應更積極地從資料壟斷的概念,調整數位市場准入的障礙。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
世界智慧財產權組織發表2020年全球創新指數報告世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年9月2日發表「2020年全球創新指數報告」(Global Innovation Index 2020, GII 2020),報告中比較131個經濟體之最新全球創新趨勢。GII為一年一度發行之報告,除了比較不同經濟體的創新指數外,每年會挑選不同創新議題進行深度研究,2020年研究主題為「誰投資創新?」(WHO WILL FINANCE INNOVATION?)。 GII的報告評比,區分為七大指標分別為:組織機構(Institutions)、研發與人力資源(Human capital and research)、基礎建設(Infrastructure)、市場成熟度(Market Sophistication)、企業成熟度(Business sophistication)、知識技術產出(Knowledge and technology outputs)以及創意產出(Creative outputs)。其下再區分為21個次標和80個小標例如政府效能(Government effectiveness)、法規範環境建構(Regulatory environment)、教育支出占GDP比例、外國學生比例、R&D支出占GDP比例、生態永續度、高科技出口、資通訊服務出口等。2020年評比全球創新指數最高的10個國家排名分別為:瑞士、瑞典、美國、英國、荷蘭、丹麥、芬蘭、新加坡、德國和南韓,均為高所得國家;這也是南韓第一次躋身進入前10名。 另外報告中亦說明,2020年COVID-19大流行引發前所未有的經濟停滯。在COVID-19爆發之前,研發支出成長明顯快於全球GDP成長,創業投資(Venture capital)和IP應用達到高峰,但疫情發生的現階段全球經濟成長大幅度下降。然而經濟成長停滯之下,突破性技術創新的潛力仍在繼續存在,例如許多仍保有現金流的大型ICT企業仍持續推動數位創新,製藥技術與生物科技產業的研發支出大量增加,健康產業研發也受到重點關注。此外,COVID-19危機亦會促進傳統產業(例如旅遊、教育和零售等)之創新,以及改變企業在本地或全球之生產工作組織方式。而在各國政府為忙於制定緊急救濟計畫(emergency relief packages),以緩解地域封鎖所造成的負面影響和經濟衰退的同時,這些緊急救濟計畫對新創公司之融資多半不夠明確,到目前為止,各國政府並沒有創新研發作為當前刺激經濟計畫中的優先事項(priority)。 報告中針對「誰投資創新?」之主題,統計數據顯示創新金融(Innovation finance)雖然受疫情影響有所下降,但金融體系尚屬健全。惟資助新創企業的資金正在枯竭(drying up),北美、亞洲和歐洲地區的創業投資交易也急劇下降,幾乎看不到首次公開發行(IPO)。即使是倖存下來的新創公司,其盈利能力和對創投者(Venture Capitalist)的吸引力也在下降。也因為疫情影響,創投者減少對創新、小型和多元化的新創事業提供資金,取而代之關注所謂的「大型交易」(mega-deals),也就是資助大型企業的發展,並將投資領域轉向健康、線上教育(online education)、大數據、電子商務和機器人科技。此外,報告中亦說明近期創投多半集中在可以短期得到報酬的創新事業,例如資通訊軟體及服務、消費性產品服務、金融商品等,取得創投機構大量資金。相較之下,若研發較為複雜的前瞻科學技術,反而取得之資金較少;同時COVID-19惡化此現象,使研發期較長之產業和企業面臨更嚴峻的財務限制。