美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?
資訊工業策進會科技法律研究所
2025年06月04日
美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。
壹、事件摘要
美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。
生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。
貳、重點說明
一、生成式AI模型訓練及模型權重對重製權之侵害
使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。
在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。
著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。
二、合理使用
對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。
(1) 作品轉化性須視模型目的及佈署判斷
報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。
有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。
(2) 受著作權保護作品之表達性
AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。
(3) 使用作品之合理比例
AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。
在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。
(4) 影響原作品之潛在市場或價值
報告中點出三項生成式AI訓練可能造成的市場危害。
A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。
B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。
C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。
三、 授權使用
對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。
參、事件評析
AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。
值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。
同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。
美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。
資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
[1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf
[2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19)
[3]supra note 1, at 26.
[4]Id. at 27.
[5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。
[6]Id. at 28.
[7]Id.
[8]Id. at 30.
[9]Id. at 36-37.
[10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。
[11]Id. at 46.
[12]Id.
[13]Id. at 47.
[14]Id. at 48.
[15]Id. at 54.
[16]Id. at 60.
[17]Id. at 65.
[18]Id. at 65-66.
[19]Id. at 66-67.
[20]Id. at 85.
[21]Id. at 106.
[22]Id. at 107.
[23]Id.
本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國司法部於2021年4月29日宣布,德國SAP全球軟體公司承認從2010年1月至2017年9月,因未能識別用戶下載軟體的地理位置,導致美國原產技術和軟體在未經許可下,透過雲端伺服器和入口網站提供給伊朗用戶,已違反美國《出口管制規則》(Export Administration Regulations, EAR)和《伊朗交易和制裁條例》(Iranian Transaction and Sanction Regulation, ITSR)。SAP向美國司法部、商務部和財政部支付800萬美元罰款並配合調查與補救,雙方達成不起訴協議。 美國司法部指出,SAP違規行為主要為以下兩種。首先,SAP及其海外合作夥伴向伊朗用戶輸出超過20,000次的美國軟體產品,其方式包括軟體的更新、升級和修補程式。SAP及總部位於美國的供應商,均未使用地理位置過濾器來識別並阻止伊朗用戶下載,且多年來SAP並未採取任何措施解決此問題,導致伊朗用戶下載後,絕大多數美國軟體再流向土耳其、阿聯酋及多家伊朗跨國公司。其次,SAP旗下的雲端企業Cloud Business Group companies(簡稱CBGs)允許約2,360名用戶在伊朗使用美國的雲端運算服務。從2011年開始SAP陸續收購多家雲端服務供應商成為其CBGs,透過收購前的盡職調查及收購後的出口管制特種審計,清楚了解到這些CBGs缺乏足夠的出口管制與制裁合規程序,但SAP仍允許CBGs被收購後繼續作為獨立實體營運,且未能將CBGs完全整合至SAP自身的出口管制規劃中。 美國司法部指出,為確保軟體等美國敏感技術產品,不會非法出口至伊朗等禁運地,公司除必須識別用戶來源外,也有責任確保供應鏈下游與之為產品交易的外國子公司能識別產品輸出地,並且同樣遵守美國經濟制裁政策與出口管制法規,維護美國外交政策與國家安全,防止美國敏感技術落入競爭對手手中。
英國因劍橋分析個資外洩事件開罰臉書英國資訊專員辦公室(Information Commissioner’s Office, ICO)於2018年10月24日公告針對臉書公司(Facebook Ireland Ltd. & Facebook Inc.)之劍橋分析(Cambridge Analytica)個資外洩事件,依據英國資料保護法(Data Protection Act 1998)第55A條之規範,裁罰臉書公司50萬英鎊之罰鍰。 自2018年3月劍橋分析違法取得與使用臉書個資事件爆發以來,估計約有8700萬筆臉書上的個人資料遭到違法使用,引起全球對於網路個資保護的重視。在遭到違法取得與使用的個資當中,也包含了歐盟以及英國臉書使用者的個資,因此英國ICO有權對此事件展開調查並對臉書公司進行裁罰。 根據英國ICO的調查,自2007年至2014年間,臉書公司對於其平台上的個資處理(processed)有所不當,違反資料保護法之資料保護原則(Data Protection Principle,DPP),包含未適當處理個人資料(DPP1),以及未採取足夠的技術與作為防止未經授權或違法使用個資(DPP7),致使劍橋分析得以透過臉書公司提供之API違法取用臉書使用者個資。 由於劍橋分析事件發生時,歐盟GDPR(General Data Protection Regulation)尚未正式上路,因此英國ICO依據事件發生時之法律,亦即基於歐盟資料保護指令(Directive 95/46/EC)所訂定之英國資料保護法,裁處臉書公司50萬英鎊的罰款;若依據基於GDPR之新版英國資料保護法(Data Protection Act 2018),臉書公司將可被裁處最高1700萬英鎊或年度全球營業額4%之罰款。
數位資產正式納入美國懷俄明州州法,並將虛擬貨幣視為金錢美國懷俄明州(Wyoming)於2019年1月18日提出S.F. 0125法案,經參眾議院三讀及州長簽署通過後,將在同年7月1日生效,代表數位資產(digital assets)正式納入懷俄明州州法第34編第29章。該法定義數位資產為表彰經濟性、所有權或近用權,並儲存於可供電腦讀取之格式(computer readable format)中,又區分為數位消費資產(digital consumer assets)、數位證券(digital securities)及虛擬貨幣(virtual currency)等三類。 數位消費資產,是指為了消費、個人或家用目的使用或購買的數位資產,包含:(1)除法律另有規定外,開放區塊鏈代幣(open blockchain tokens)視為個人無形資產(intangible personal property),(2)非屬本章數位證券和虛擬貨幣範圍內之數位資產;數位證券則是指符合懷俄明州州法第17編第4章有價證券定義的數位資產,但排除數位消費資產及虛擬貨幣;又,虛擬貨幣是指使用數位資產作為交易媒介(medium of exchange)、記帳單位(unit of account)或具儲存價值(store of value),且尚未被美國政府視為法定貨幣(legal tender)。 本次修法規定數位資產均為個人無形資產,另將數位消費資產視為該州州法下之一般無形資產,數位證券視為該州州法下之有價證券及投資性財產,虛擬貨幣則視為金錢,有論者表示本次修法有助於促進數位資產流通,並鼓勵各州跟進修法。然此舉是否有助於該州推行數位資產產業,尚待持續觀測,始能得知其對業界與政府監管所造成之影響。
歐盟聯合研究中心公布智慧電網計畫及智慧電表部署的成本效益分析指導原則智慧電網是歐洲未來低碳能源政策的核心議題,但要更新整個電力系統所費不貲,根據國際能源署(International Energy Agency, IEA)研究指出,從2007年至2030年,若要從生產、輸電到配電全部更新,需要花費1.5兆歐元(EUR 1.5 trillion),故基於投資的考量,有必要依據電網示範計畫所獲得的實際數據,來評估智慧電網發展的成本效益。因此,歐盟聯合研究中心(Joint Research Centre, JRC)分析了歐洲過去及現在正在進行的智慧電網示範計畫的成果,提出全面性的成本效益分析(cost-benefit analysis, CBA)評估架構,並選定葡萄牙InovGrid計畫作為參考實例以調整相關內容,於2012年初公布「智慧電網計畫的成本效益分析指導原則(Guidelines for conduction a cost-benefit analysis of Smart Grid projects,以下簡稱「智慧電網CBA指導原則」)」。 這是第一次具體的將CBA使用在智慧電網的實際案例評估之上,「智慧電網CBA指導原則」是為協助使用者分析不同地區的考量因素,以瞭解利益與成本,並分析關鍵要素,包括計畫的規模大小(例如每年接受服務的消費者、能源消費等)、工程特色(例如所採用的技術、主要設備的功能性)、電網當地特色、利益關係者(哪些人的成本及利益應納入考慮)、計畫的明確目的及預期對社會經濟的衝擊,以瞭解像分散式能源整合的可能性、電價及租稅的衝擊、環境成本等。「智慧電網CBA指導原則」是在提供建議,依據電力研究機構(Electric Power Research Institute, EPRI)的研究框架,逐步地提供了評估架構,作為分析考量時的核對清單。由於納入了地區性因素的考量,因此分析的結果最終將取決於各計畫的開發者及相關決策者的專業判斷。 此外,JRC亦公布「智慧電表部署的成本效益分析指導原則(Guidelines for conduction a cost-benefit analysis of Smart Metering Deployment,以下簡稱「智慧電表CBA指導原則」)」。「智慧電表CBA指導原則」之內容主要提供會員國在評估智慧電表的部署時,有一套分析的標準。如同「智慧電網CBA指導原則」一般,「智慧電表CBA指導原則」亦考量計畫規模、工程特色、電網當地特色、利益關係者、計畫的明確目的及預期對社會經濟的衝擊等因素,但非針對不同地區提供細節性的指示,因此仍須仰賴各計畫的開發者及相關決策者的專業判斷,以評估智慧電表部署的可行性。