通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

資訊工業策進會科技法律研究所

2025年08月06日

歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。

壹、事件摘要

歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。

由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。

AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。

貳、重點說明

一、制定並更新模型文件(措施1.1)

透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。

前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。

除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括:

(一)、一般資訊General information

1.模型提供者法律名稱(Legal name)

2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。

3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。

4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。

5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。

(二)、模型屬性(Model properties)

1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。

2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。

3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。

4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。

(三)、發佈途徑與授權方式(Methods of distribution and licenses)

1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。

2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。

(四)、模型的使用(Use)

1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。

2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。

3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。

4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。

5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。

(五)、訓練過程(Training process)

1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。

2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。

(六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation)

1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。

2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。

3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。

4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。

5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。

6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。

7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。

8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。

(七)、訓練期間的計算資源(Computational resources (during training))

1.訓練時間(Training time):所測量期間及其時間的描述。

2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。

3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。

(八)、訓練及推論的能源消耗(Energy consumption (during training and inference))

1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。

2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。

二、提供GPAI模型相關資訊(措施1.2)

通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。

於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。

三、確保資訊品質、完整性及安全性(措施1.3)

GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。

參、事件評析

一、所要求之資訊完整、格式標準清楚

歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。

二、表格設計考量不同利害關係人的資訊需求

GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。

三、配套要求公開並確保資訊品質

該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。

四、以透明機制落實我國AI基本法草案的原則

我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。

透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30)

[2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

你可能會想參加
※ 通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9382&no=67&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
加拿大交通部提出加拿大自駕系統安全評估文件

  加拿大交通部(Department of Transport Canada)於2019年1月發布「加拿大自駕系統安全評估(Safety Assessment for Automated Driving Systems in Canada)」文件,該文件將協助加拿大企業評估其發展高級(SAE第三級至第五級)自駕層級車輛之安全性,並可與美國相關政策進行整合。該文件指出,因相關技術尚在發展之中,不適合使用強制性規範進行管制,因此將利用引導性之政策措施來協助相關駕駛系統安全發展。加拿大交通部於文件中指出可用於評估目前自駕車輛研發成果之13種面向,並將其分類為三個領域: 自駕技術能力、設計與驗證:包含檢視車輛設計應屬何種自駕層級與使用目的、操作設計適用範圍、物件及事件偵測與反應、國際標準、測試與驗證等。 以使用者為核心之安全性:包含安全系統、人車界面與控制權的可取得性、駕駛/使用人能力與意識教育、撞擊或系統失靈時的運作等。 網路安全與資料管理:包含管理網路安全風險策略、售後車輛安全功能運作與更新、隱私與個資保障、車輛與政府分享之資訊等。   加拿大交通部鼓勵企業利用該文件提出安全評估報告並向公眾公開以增進消費者意識,另一方面,該安全評估報告內容也可協助加拿大政府發展相關安全政策與規範。

澳大利亞提出政府資料共享法案

  澳大利亞總理及內閣部(The Department of the Prime Minister and Cabinet,PM&C)之國家資料委員辦公室(Office of the National Data Commissioner)於2020年12月9日提交「澳大利亞資料可用性及透明度法案」(Data Availability and Transparency Bill 2020)至澳大利亞國會(Parliament of Australia),國會並已完成一讀及二讀 。   該法案旨在建立一個新的公部門資料共享方案,將原先未開放的公部門資料,透過本法案所設計的共享公部門資料相關管理制度,以促進公部門資料的可存取性及保障措施的一致性,藉此提高公部門資料透明度和大眾利用公部門資料的信心。   該法案所設計的資料共享機制,係由作為「資料保管者」(Data custodians)的各聯邦部門和州政府,自行或透過「被認證的資料服務提供者」(Accredited data service provider,下稱ADSP)共享其所保管的政府資料,使「被認證的利用者」(Accredited user,下稱利用者)得以利用之。   另外,該法案要求資料保管者必須在符合資料共享要件的情況下,才能共享資料,要件包含: 1、資料共享目的:係指該法案只允許資料保管者基於「提供政府服務」、「通知政府政策和計畫」、「研究與開發」等三個目的分享資料。倘涉及國家安全及犯罪調查等需要特殊監督利用機制的政府資料,則不包含在內。 2、資料共享原則:包含符合公共利益或道德評估之計畫;具備適合共享資格的人員;安全環境;資料最小化;合目的產出等五個原則。 3、資料共享協議:資料保管者與利用者之間,必須簽定「資料共享協議」,該法案有規定資料共享協議的應記載條款。   滿足上述要求時,該法案使原先被法律限制共享,或單純未積極開放的資料,都得以在利用者提出要求後,於符合要件及資訊保密相關法規後共享。反之,若不符合法案的要求,則不得共享資料,回復到原先的法律狀態,適用原先的資料保護框架。   最後,該法案授權獨立監管機構「國家資料委員」(National Data Commissioner),負責認證ADSP及可利用共享資料之利用者,並監管所有的資料共享計畫,以及提供諮詢、指導和倡導資料共享計畫的最佳方案。

美國商務部提出CHIPS護欄條款,對受補助者實施限制以維護國家安全

美國商務部於2023年3月21日對《晶片與科學法》(CHIPS Act)獎勵計畫中的國家安全護欄條款(guardrails)提出法規草案預告(Notice of Proposed Rulemaking, NPRM),並對外徵詢公眾意見,確保美國和盟友間的技術協調合作,促進共同國家安全利益。CHIPS作為國家安全倡議,以重建和維持美國在全球半導體供應鏈中的領導地位為目標,並確保CHIPS所補助的資金及尖端技術,不會直接或間接使中華人民共和國、俄羅斯、伊朗和北韓等特定國家受益或用於惡意行為,若CHIPS受補助者參與限制交易,政府可以收回全部資金補助。護欄條款對受補助者實施限制說明如下: 1.限制在特定國家擴張先進設施:自獲得補助起10年內,禁止對特定國家或地區的尖端和先進半導體設施為重大投資、協助擴大半導體製造能力。投資金額達100,000美元定義為重大交易,將設施生產能力提高5%為擴大半導體製造能力。 2.限制在特定國家擴建傳統設施:禁止在特定國家擴充半導體新生產線或將傳統半導體設施的生產能力擴大超過10%。若半導體設施的產出「主要服務」於該國國內市場(超過85%),則允許建造新的傳統設施,但最終產品只能在該國家或地區銷售。 3.半導體屬對國家安全至關重要項目:擬將一系列晶片歸類為涉及國家安全,並與國防部和情報局協商制訂清單管制,包括用於量子運算、輻射密集環境,和其他專業軍事能力的新進和成熟製程晶片。 4.加強美國出口管制:透過出口管制和CHIPS國家安全護欄條款,調整對儲存晶片的技術門檻限制並加強控制。對邏輯晶片應用,會設定比出口管制更加嚴格的門檻。 5.限制聯合研究和技術授權:限制與特定外國實體就引起國家安全問題的技術或產品進行聯合研究和技術授權工作。聯合研究定義為由兩人或多人進行的任何研究和開發,技術授權為向另一方提供專利、營業秘密或專屬技術的協議。

美國於六月十二日全面關閉無線電視類比訊號

  美國的無線地面電視於今(2009)年6月12日起關閉類比訊號,全面進行數位播送。聯邦通訊委員會(The Federal Communications Commission, FCC)預期政府雖已進行大規模宣傳,但仍有部分家庭尚未完成準備。依尼爾森(Nielsen)公司調查,至6月14日止,尚有兩百五十萬用戶無法接收數位電視訊號;此外,相較於全部家庭中僅2.2%未完成數位轉換的準備,非洲裔與西班牙裔家庭未完成的比例則分別達4.6%與3.6%。   目前美國多數家庭是收看付費的有線電視與衛星電視,數位轉換對此部分觀眾並無明顯影響,但仍有數百萬家庭收看免費的無線電視。在數位轉換後,舊型電視機須加裝數位轉換盒,方能接收數位訊號;對此,美國政府已發放優待券補助用戶購買轉換盒(至7月底為止)。FCC表示,部分家庭裝置轉換盒與電台改善傳輸訊號,尚須花費數週時間,而民眾利用FCC的協助專線進行諮詢時,最普遍的問題則是有關優待券方案與轉換盒的安裝。   此外,電視台原本擔心在數位轉換後,部分受影響的人口(特別是年輕觀眾)將可能不再觀看電視,而選擇利用網路收視電視節目。但尼爾森公司的調查指出,數位轉換後整體收視率僅有些微下滑,除了數位化外,亦可能是受到天氣較佳或重要運動賽事轉播較少等因素影響。

TOP