法國CNIL認Google於Gmail中投放之偽裝廣告及個人化廣告因欠缺當事人有效同意而違法,開罰3.25億歐元

法國國家資訊與自由委員會(Commission Nationale de l’Informatique et des Libertés, CNIL)於2025年9月1日針對一起由歐洲數位權利中心(noyb - The European Center for Digital Rights)提出的申訴做成決議,指Google未經Gmail使用者同意,將廣告偽裝為電子郵件進行「偽裝廣告」(Disguised Ads)投放,以及在對Gmail使用者投放個人化廣告前,未能於Gmail帳號申請流程中提供當事人提供較少cookies、選擇非個人化之通用廣告(generic ads)的選項,違反了《電子通訊法》(code des postes et des communications électroniques)與《資訊與自由法》(loi Informatique et Libertés)中關於歐盟《電子隱私指令》(ePrivacy Directive)之施行規定,對Google裁處了3.25億歐元的罰鍰,並要求改善。以下節錄摘要該裁決之重點:

一、 偽裝成電子郵件的偽裝廣告與電子郵件廣告均須獲當事人同意始得投放

歐盟《電子隱私指令》第13條1項及法國《電子通訊法》規定,電子郵件直接推銷(direct marketing)僅在其目標是已事先給予同意的使用者時被允許。CNIL,依循歐盟法院(CJEU)判例法(C-102/20)見解,認為若廣告訊息被展示在收件匣中,且形式類似真實電子郵件,與真實電子郵件相同位置,則應被認為是電子郵件直接推銷,須得到當事人之事前同意。因此,CNIL認定偽裝廣告即便技術上不是狹義的電子郵件,僅僅因其在通常專門用於私人電子郵件的空間中展示,就足以認為這些廣告是透過使用者電子郵件收件匣傳遞的廣告,屬於電子郵件廣告,而與出現在郵件列表旁邊且獨立分開的廣告横幅不同,後者非屬電子郵件廣告。

二、 Cookie Wall下當事人的有效同意:「廣告類型」的選擇、服務申請流程的隱私設計與資訊透明

CNIL參酌歐盟個人資料保護委員會(European Data Protection Board, EDPB)第2024/08號關於「同意與付費模式」意見,認為同意接受廣告在特定條件下得作為使用Gmail服務的條件。換言之,以「cookie wall」(註:拒絕cookie的蒐集即無法獲得服務之網站設計)取得之當事人「同意」,非當然不自由或無效。CNIL認為,在免費服務的框架下,cookie wall在維持提供服務與服務成本之間的經濟平衡上,要求服務申請者須接受投放廣告的cookie是合法的。惟CNIL認為,這不代表Google可以任意決定所蒐集的cookies和相應廣告模式的類型。

CNIL要求,當事人在cookie wall的框架內仍應享有選擇自由,才能取得蒐集為投放個人化廣告之cookies的當事人有效同意,亦即:在個人化廣告處理更多個資和對當事人造成更多風險的情況下,當事人應被給予機會選擇「等值的替代選項」,亦即通用廣告,並完全且清晰地了解其選擇的價值、範圍及後果。

然而,CNIL發現,Google將與廣告個性化相關的cookies拒絕機制設計得比接受機制更複雜,實際上阻礙了使用者拒絕隱私干預程度更高的cookies。這種拒絕途徑偏袒了允許個人化廣告的cookies的同意,從而影響了當事人的選擇自由。CNIL也發現,Google從未以明確方式告知使用者建立Gmail帳戶時面臨cookie wall,以及對此使用者享有甚麼選擇,而其提供的資訊更引導使用者選擇個人化廣告,導致選擇一般廣告的機會遭到犧牲。

三、 為何不是愛爾蘭資料保護委員會(Data Protection Commission, DPC)管轄?

GDPR設有「單一窗口機制」,依據該合作機制,對Google進行的GDPR調查,應由作為主任監管機關(Lead Supervisory Authority)的愛爾蘭DPC管轄。惟在本案,CNIL認為並不適用於單一窗口機制。因為與cookies使用及電子推銷相關的處理並非屬於GDPR範疇,而是適用電子隱私指令,CNIL對法國境內的cookies使用及電子推銷處理享有管轄權。此爭議反映出即便GDPR旨在確保標準化單一市場內的數位管制,但尚不足以弭平成員國間監管強度之差異。

相關連結
你可能會想參加
※ 法國CNIL認Google於Gmail中投放之偽裝廣告及個人化廣告因欠缺當事人有效同意而違法,開罰3.25億歐元, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9412&no=67&tp=1 (最後瀏覽日:2025/11/17)
引註此篇文章
你可能還會想看
世界智慧財產權組織發布2020世界智慧財產權指標報告,世界專利申請數於近十年首度下降

  世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年12月7日發布2020年世界智慧財產權指標報告(World Intellectual Property Indicators 2020, WIPI 2020)。WIPI年度報告蒐研分析150個國家及地區的智財統計資料,作為商務人士、投資者、學界和創業家參考指標。該份報告顯示,全球的商標與設計專利的申請活動成長約5.9%和1.3%,然而受到了中國專利申請量下降的影響,2019年全球專利申請下降3%,這也是近10年來首度下降;若扣除中國不計,2019年全球專利申請數量成長2.3%。   該份報告除了彙整國際整體數據以外,依專利、商標、工業設計、植物品種、地理標示等不同主題分別統計。在專利部分,中國大陸國家知識產權局、美國專利商標局分別為收到專利申請提交數量之前兩名;接續為日本、韓國和歐盟。這五大智財當局合計占全球總數之84.7%。其中韓國、歐盟和美國申請數量均有成長,中國大陸申請數量下降達9.2%,亦為中國大陸24年來首度下降,報告說明其因為中國大陸改善申請案結構和申請品質之故,致中國大陸國內公民之申請量減少10.8%,而國外申請量仍保持成長。   另外在商標部分,受理申請數量最多之前六個國家分別為中國、美國、日本和伊朗和歐盟;而2018年到2019年間受理申請增加幅度最多者為巴西、越南、伊朗、俄國和土耳其。據估計,2019年全球有效商標註冊量為5820萬,較2018年成長15.2%,且中國就囊括約2520萬,其次為美國的280萬和印度的200萬。針對中國大陸商標和專利申請數量為世界之冠,引起全球關注,美國專利商標局(USPTO)亦在2021年1月13日發布研究報告,指出中國大陸商標和專利申請案數量可能源自政府補貼或其他非市場因素的影響;其中又以政府補貼為刺激商標與專利申請案件數增長的最大可能原因。而這些非市場因素的商標及專利申請案件可能誤導世界對中國大陸創新能力的評估。   在工業設計(Industrial designs)方面,2019年全球提交136萬件設計專利申請,其中104萬件為工業設計;而中國大陸的工業設計申請量就囊括約71萬件。若以類型區分,和家具有關的設計專利比例為全球9.4%,其次是服裝(8.1%)以及包裝和容器(7.3%)。植物品種(Plant varieties)部分,中國大陸智財當局於2019年收到了7834種植物新品種申請,較2018年成長36%,同時也占全球植物品種申請的三分之一以上。地理標示(Geographical indications)部分,截至2019年和葡萄酒及烈酒有關的地理標示約為全球地理標示的56.6%,其次是農產品/食品(34.2%)和手工藝品(3.5%)。

國際再生能源總署針對各國實施「綠氫憑證」提出建議報告

  國際再生能源總署於(International Renewable Energy Agency, IRENA)2022年3月13日發布「能源終端使用部門:綠氫憑證」(Decarbonising End-use Sectors: Green Hydrogen Certification)研究報告,說明綠氫的部屬與使用,以及國家、區域與國際綠氫市場的發展將取決於追蹤制度的建立與接受程度。   太陽能或風電等再生能源將水電解為氫氣與氧氣後,可轉換為氫能,且因產氫過程不排碳,故此類氫能稱為綠氫。為降低溫室氣體排放、解決溫室效應與極端氣候等問題,綠氫與來自綠氫的合成燃料,在追求減少碳排放的能源轉型中扮演關鍵地位。   該報告概述了綠氫憑證制度的技術考量以及創建此類工具所需面臨的挑戰,並對政策決策者提出關鍵建議,旨在建立具備國際認證標準的綠氫追蹤制度——綠氫憑證。   綠氫憑證是指生產設備業者、貿易商及供應商等能源市場參與者,向國際再生能源憑證相關組織或當地政府登記取得其生產過程中所使用的能源來自於綠氫之證明。消費者可以透過該憑證識別綠氫的來源,並可行使相關權利。   為確保綠氫憑證及其追蹤制度達成綠氫行業既定脫碳目標,該報告提出十點建議:(1)明確「綠氫」之定義;(2)建立標準,確保綠氫電力生產來源安全可靠;(3)確保憑證能為消費者及決策者提供足夠資訊;(4)簡化行政程序,減少行政負擔;(5)實施具備成本效益的憑證追蹤制度;(6)建立適當的控制機制避免濫用或缺乏透明度;(7)應考量結合既有制度;(8)避免跨國交易時重複頒發不同國家之憑證(9)利用綠色金融標準鼓勵遵守憑證要求;(10)促進國際合作,建立全球共通之標準與規則。

美國環境保護署(EPA)發布顯著新種使用規則(SNURs),將影響單壁及多壁奈米碳管(Carbon Nanotubes)之使用

  美國環境保護署(Environmental Protection Agency,以下簡稱EPA)於2010年9月17日聯邦政府公報中,依據毒性物質管制法(Toxic Substances Control Act,以下簡稱TSCA)section 5(a)(2)授權,發布了顯著新種使用規則(Significant New Use Rules,以下簡稱SNURs)的最終規則(final rule)。此項規則於2010年10月18日生效,任何想要製造、輸入以及加工單壁奈米碳管(single-walled carbon nanotubes,以下簡稱SWCNTs)及多壁奈米碳管(multi-wall carbon nanotubes,以下簡稱MWCNTs)兩項化學物質者,必須依照TSCA section 5(a)(1)要求,在進行上述利用活動的至少90天前,報經EPA核准,否則不得使用。   事實上,EPA曾於前(2009)年6月24日發布上述SNURs的直接最終規則(direct final rule),徵詢公眾意見,並在同年8月21日撤回該規則。在重新提案的規則中,主要是新增SWCNTs、MWCNTs釋放於水中的顯著新種使用態樣,並將已完全反應、結合或嵌入已完全反應之聚合物基(polymer matrix)以及嵌入不再進行機械加工外其他處理之永久硬性聚合物形式(permanent solid polymer form)之SWCNTs、MWCNTs物質,排除在新SNURs適用範圍之外。   目前,依照TSCA section 5(e)之規定,若系爭之化學物質已列名於TSCA section 8(b)所建立之現存(existing)化學物質目錄(INVENTORY)中,其他化學物質生產者欲生產該種化學物質時,並不需再向EFA進行通報程序。然而,若EFA對該列名之化學物質曾發出TSCA section 5(e)下之具風險性命令(risk-based order),則相關之化學物質生產者須於生產前依據TSCA section 5(a)(2)規範中之SNURs規定通報EFA,使得EFA於生產前仍有再次檢驗該系爭化學物質的機會。   這一次,EPA以制訂SNURs之方式,要求所有製造、輸入、加工該項化學物質者,有義務通報任何與原同意命令所定條款不同的使用活動。這樣的規範變動,預計將對奈米材料的製造及運用活動造成不小的影響。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP