談日本基因改造實驗管理規範及其執行現況

刊登期別
第20卷,第10期,2008年10月
 
隸屬計畫成果
經濟部技術處科專生技法制研究計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 談日本基因改造實驗管理規範及其執行現況, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=5275 (最後瀏覽日:2025/07/06)
引註此篇文章
你可能還會想看
逐漸式微的「不可避免揭露原則(Inevitable Disclosure Doctrine)」

在2023年,多個美國法院判決拒絕採納「不可避免揭露原則(Inevitable Disclosure Doctrine)」,顯示出該原則將不再是原告於營業秘密訴訟中的一大利器,原告亦無法僅透過證明前員工持有營業秘密資訊且處於競爭狀態,便要求法院禁止該名前員工為其競爭對手工作。 在2023年2月,美國伊利諾伊州北區法院於PetroChoice v. Amherdt一案中指出,法院在適用「不可避免揭露原則」時會遏制競爭對手之間的員工流動,故將評估個案事實並嚴格限制其適用。在2023年6月,美國伊利諾伊州北區法院於Aon PLC v. Alliant Ins. Services一案中指出,根據2016年美國國會所通過的「保護營業秘密法案(Defend Trade Secrets Act, DTSA)」,該法案拒絕了「不可避免揭露原則」的適用,並禁止法院僅憑他人所知悉的資訊,阻礙其尋求新的工作,因此駁回了原告的損害賠償主張。在2023年9月,美國密蘇里州東區法院於MiTek Inc. v. McIntosh一案中同樣拒絕了「不可避免揭露原則」的適用,儘管該州的州法並未明確表達採納或拒絕該原則。 除此之外,美國聯邦法院在去年度的每一份報告意見中(Reported Opinion),皆未顯示出根據「不可避免揭露原則」申請禁令或取得救濟是合理的。換言之,大多數的美國法院都拒絕採納「不可避免揭露原則」或嚴格限制其適用。 綜上所述,儘管「不可避免揭露原則」能有效防止來自前員工不當使用其營業秘密的威脅,但其不再是未來營業秘密訴訟中的勝訴關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國《現在行動法》(MOBILE NOW Act)

  美國《現在行動法》(MOBILE NOW Act)全名為《創造無線寬頻投資機會暨減少過度且不必要之障礙法》(Making Opportunities for Broadband Investment and Limiting Excessive and Needless Obstacles to Wireless Act),於2018年3月23日由美國總統簽署生效。《現在行動法》(以下簡稱本法)立法目的在於確保頻譜資源有效利用與建構未來無線通訊基礎建設的法制框架,具體措施包含訂定頻譜釋出目標、確認毫米波(millimeter wave,對應頻率為30至300GHz)頻譜商用可能性、訂定頻譜釋照政策規劃、簡化通訊基礎建設流程,以及確保鄉村無線通訊技術的發展等。   依據本法要求頻譜主管機關應完成三大任務,包含:一、依本法第603(a)條第1項,在2022年12月31日前,主管機關應釋出至少255MHz的頻譜提供予固定與行動無線寬頻使用。二、依本法第604(a)條,聯邦通訊委員會(Federal Communications Commission, FCC)應在本法施行後兩年內完成在42000至42500MHz間的毫米波進階無線通訊服務及操作規範。三、針對當前已高度使用的3GHz頻段,主管機關應在本法施行後24個月內完成3100MHz至3550MHz間頻段的影響分析及商用可能性報告,以及在本法施行後18個月內完成3700MHz至4200MHz間頻段的公眾意見徵詢,並提交對聯邦機構影響分析及商用可能性報告。透過上述三大任務完成頻譜規劃與商用可能性評估,輔以完善頻譜釋照政策及簡化流程,創造吸引電信業者投資次世代通訊技術之誘因。   美國參議院於2019年12月5日針對本法施行後的辦理情形,召開「次世代通訊技術革新:《現在行動法》落實情形」聽證會,會議中強調《現在行動法》的落實與確保美國次世代通訊技術的領先有密切相關,因此透過本法移除頻譜規劃與分配產業商用過程中的障礙至關重要,本法使美國得以在全球5G通訊技術競賽中處於領先地位;在聽證會中肯定FCC在毫米波頻譜拍賣中的貢獻,並期許FCC與國家電信暨資訊管理局(National Telecommunications and Information Administration, NTIA)能夠藉由落實本法來確保頻譜的有效規劃與分配,進一步維持美國在5G通訊技術發展的領先地位。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

用數字解讀國內企業的智財管理能量

TOP