歐盟在今年5月19日公布的數位議程(Digital Agenda)中,設定了多項寬頻建設目標,包括所有歐洲民眾於2013年均能擁有基本寬頻, 2020年擁有30Mbps以上的高速寬頻,與50%以上的歐盟家戶擁有100Mbps以上的超高速寬頻。為達成此項目標,歐盟執委會於今年9月20日提出了採納下世代網路管制建議(Commission Recommendation on regulated access to Next Generation Access Networks(NGA))、提出未來五年的無線電頻譜政策計畫,與鼓勵公、私部門進行寬頻網路投資等三項主要推動措施。
在NGA管制建議正式公布前,執委會曾於2008年與2009年兩度就建議草案進行公開資詢。執委會認為,此一建議除了可提升管制明確性,避免管制假期(regulatory holidays)外,並在鼓勵投資與維護競爭間取得適當平衡,其重要管制原則如下:
1. 管制者對於獨占業者之光纖網路接取進行成本訂價管制時,應藉由風險溢價(risk premium)充分反應投資風險,使投資者能獲取具吸引力之利潤。
2. 管制者應採取適當的接取管制措施,促使新進業者進入市場,使其可依投資階梯(ladder of investment)逐步建置其自有網路,促進基礎設施競爭。
3. 管制者所採取之事前管制措施,應反映個別市場與城鄉區域之市場競爭差異。
4. 管制建議強烈支持NGA網路的共同投資,並對長期或大量的光纖迴路接取合約,允許在一定條件下給予價格折扣。
日本海洋科學家最近提出一項對抗溫室效應的新計畫,準備在日本東北部外海養殖大片海藻,吸收大氣中二氧化碳。且這些海藻還可以轉化成生物質能,為人類提供大量乾淨的能源。相關技術一旦試驗成功,日後將可望納入聯合國氣候變化綱要公約京都議定書的修訂條文,並推廣到其他濱海國家。 過去科學家一直認為,海藻生長過程中雖然會吸收大氣中的二氧化碳,但是排出的醣類物質也會被細菌分解,釋出的有機碳將再次轉變成二氧化碳。不過歐洲海洋學家最近研究發現,這些海藻排出物會帶著有機碳快速沉入深海,不至於影響大氣中的二氧化碳濃度。 計畫領導人、東京海洋大學能登谷教授的團隊打算在海上安置一百個面積一百平方公里的特製網,用以固著兩種生長快速的藻類-馬尾藻與「 Sostera marina 」,形成一百座飄浮的海藻田。一年之後,每一座海藻田會生長成重達廿七萬噸的龐然巨物,並且在光合作用過程中吸收卅六噸的二氧化碳。海藻田上將配備電子裝置,讓科學家以全球衛星定位系統追蹤,一旦飄移而影響航道,就必須拖回原來位置。這些海藻田最後將拖回陸地,經過超高溫技術處理,產生氫與一氧化碳,再轉化為燃燒時不會釋出二氧化碳的生物燃料,可謂一舉數得。 美國在一九七○年代曾試驗類似的「巨藻計畫」,但後來因為大量生長後回收的海藻難以處理,計畫因此束之高閣。但日本科學家突破這項難關,設計出可行的海藻再利用方法,於是讓「以海藻吸收二氧化碳」的構想重現希望。
新加坡公布「於安全性應用程式負責任地利用生物特徵識別資料指引」協助組織合理利用生物特徵識別資料新加坡個人資料保護委員會(Singapore Personal Data Protection Commission, PDPC)於2022年5月17日,公布「於安全性應用程式負責任地利用生物特徵識別資料指引」(Guide on the Responsible Use of Biometric Data in Security Applications),協助物業管理公司(Management Corporation Strata Title, MCST)、建築物及場所所有者或安全服務公司等管理機構,使各管理機構更負責任地利用安全攝影機和生物特徵識別系統,以保護蒐集、利用或揭露的個人生物特徵識別資料。 隨著安全攝影機等科技應用普及化,管理機構以錯誤方法處理個人生物特徵識別資料之情形逐漸增多,因此PDPC發布該指引供管理機構審查其措施。其中包括以下重點: (1)定義生物特徵識別資料包含生理、生物或行為特徵,及以此資料所建立之生物特徵識別模版; (2)說明維安攝影機及生物特徵識別系統運用所應關鍵考量因素,如避免惡意合成生物特徵之身分詐欺、設定過於廣泛而使系統識別錯誤等情形,並舉例資料保護產業最佳範例,如資料加密以避免系統風險、設計管理流程以控管資料等; (3)說明生物特徵識別資料在個資法之義務及例外; (4)列出實例說明如何安全監控之維安攝影機,並提供佈署建築物門禁或應用程式存取控制指引,例如以手機內建生物識別系統管理門禁,以取代直接識別生物特徵,並有提供相關建議步驟及評估表。 該指引雖無法律約束力,仍反映出PDPC對於安全環境中處理生物特徵識別資料之立場。而該指引目前僅針對使用個人資料的安全應用程式之管理機構應用情境,並未涵蓋其他商業用途,也未涵蓋基於私人目的使用安全或生物特徵識別系統之個人,如以個人或家庭身分使用居家高齡長者監控設備、住宅生物特徵識別鎖等應用情境。
歐盟針對RFID的重要議題召開辯論RFID 的利用帶來新一波的物流及管理變革,但是侵犯人權及隱私等相關問題也引發了尖銳的討論,英美等國隱私保護團體及國會議員紛紛呼籲英制訂相關的使用規範。 歐盟在 2006 年 3 月 10 日也舉辦了一場公開意見徵詢,主要徵詢意見的議題有跨國 RFID 系統互通、相容,以及在應用上可能因洩漏位址、身份及歷程而導致的隱私及安全問題。資訊社會及媒體委員會主席 Vivien Reding 表示,隨著晶片技術進步,晶片會變得越來越聰明, RFID 全面應用後可能引發的問題可能在未來會越來越嚴重。透過多網路的連結,必然會促進經濟的繁榮及生活品質的提升,但是隱私保護的問題若不解決,將可能會影響這項科技的應用。因此,對於 RFID 未來的應用應該達成一種社會共識( society-wide consensus )並預先建立可信賴的保護機制。 為此,執委會將公開徵求諮詢,預計在下半年會公布意見資料,後續並可能在進行 2002 年電子通訊及隱私保護指令的修正工作及檢討 RFID 頻率的指配。
美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。