歐洲藥物管理局修正發布「藥品交互作用試驗指針」提升用藥安全與效用

  歐洲藥物管理局(European Medicines Agency, EMA)今(2012)年7月6日修正發布「藥品交互作用試驗指針」(Guideline on the Investigation of Drug Interactions),EMA表示這是該指針自1997年發布以來最大的修正,內容包括藥廠如何進行新藥與已經流通使用的藥品的潛在交互作用研究,以及新藥與食品的交互作用研究。

 

  「藥品交互作用試驗指針」內容包括用藥建議方案,其乃基於臨床相關交互作用以及調整用藥劑量、監控病人用藥情形之可行性研究為基礎。同時,有關草藥使用的建議方案也包括在內。

 

  EMA表示,新的修正內容使「藥品交互作用試驗指針」與藥品交互作用研究科學之發展現況趨於一致,例如現已能透過少數的精密設計研究,即可預測臨床相關藥品交互作用的結果,以及在了解近年酵素觸發技術(enzyme induction)與藥物載體(drug-transporter)間的交互作用上的科學進展。

 

  藥物交互作用對於用藥的安全與效用極為重要,許多病人,尤其是年長者經常需要同時服用多種藥物,因多種藥物交互作用而產生的負作用(adverse effects)是患者反覆就醫的重要因素之一,且可能減低個別藥物原有的療效。

 

  「藥品交互作用試驗指針」新修正內容將於2013年1月1日生效,全文共計七部分,主要重點在第五部分的藥物動力學(Pharmacokinetic)交互作用研究,內容包括:從研究進行方式即藥品的吸收、分布、代謝、移轉到人體試驗設計、草藥與特殊食品產品、以及產品特性標示事項等都有建議規範,其全文可至EMA官方網站下載。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 歐洲藥物管理局修正發布「藥品交互作用試驗指針」提升用藥安全與效用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=5793 (最後瀏覽日:2024/12/05)
引註此篇文章
你可能還會想看
FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案

  美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」   為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。   根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括: (1) 醫療器械可能帶來好處程度。 (2) 醫療器械存在的風險程度。 (3) 關於替代治療或診斷的利益-風險之不確定程度。 (4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。 (5) 公共衛生需求的程度。 (6) 依據臨床證據可支持上市前之可行性。 (7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。 (8) 上市後緩解措施的有效性。 (9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。) (10) 對於早期患者訪問醫療器械的可能帶來的益處。   本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。

美國資通訊設備無障礙使用計畫趨勢觀察

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

中國 REACH 成形,台灣準備好了嗎?-從中國新化學物質環境管理辦法看我國新化學物質管理

TOP