Google最近因他的Android作業系統,遭到其競爭對手向歐盟競爭法主管機關檢舉違反競爭法。以FairSearch.org為代表、Nokia、Microsoft及Oracle在內的Google競爭對手指控,Google企圖利用他的Android系統作為”特落伊之馬”(Trojanisches Pferd),以獲得行動業務的獨占地位並據以控制使用者資料。這是因為Google要求智慧型手機和平板電腦的製造商若要使用一些受歡迎的Google應用程式,如Google Maps或YouTube時,必須連同一系列其他的Google應用程式,一起放在這類行動設備的桌面上明顯位置。這項要求被競爭對手認為已影響到其他App提供者,且讓Google擁有隨時透過製造商銷售出的智慧型手機,掌控大量的用戶資料的能力。
此外,FairSearch.org也主張,因Google以不符成本的方式推廣他的Android作業系統,此舉讓其他作業系統的提供者難以回收投資。目前Google的Android作業系統已經在智慧型手機服務市場擁有獨占地位--其市場佔有率約為70%;在平版電腦的服務市場上,Android作業系統的佔有率也在增加之中。因此,歐盟執委會應對Google這些在行動市場上的不當行為展開嚴格調查,以避免歐洲的消費者因Google濫用市場的行為而受到損害。事實上FairSearch.org已經不是第一次指控Google違反競爭法,在此之前,FairSearch.org就曾向歐盟檢舉Google的搜尋引擎業務違反歐盟競爭法,其被指控就其搜尋引擎的搜尋結果,涉嫌對自己提供的服務提供優惠的差別待遇。歐盟在2010年11月正式對此展開調查,該案調查現已近尾聲,歐盟對此的立場傾向要求Google在他的搜尋結果應清楚地說明哪些是屬於Google集團的服務以作為標示。至於最新有關Android作業系統的指控,歐盟已表明會以放大鏡檢視,但歐盟是否會正式調查或將兩案合併審理,尚不清楚,Google也還未針對有關Android作業系統的指控做出回應。
本文為「經濟部產業技術司科技專案成果」
美國加州州長於2021年10月6日正式簽署《基因資訊隱私法》(Genetic Information Privacy Act, GIPA), 將於2022 年 1 月 1 日生效。GIPA在聯邦法和州隱私法的框架下,補充建立基因資訊保護機制,規範無醫護人員參與的「直接面對消費者基因檢測公司」(Direct-to-consumer genetic testing company,下稱DTC公司)之個資保護義務,並要求DTC公司執行下列消費者基因資料(去識別化資料除外)之蒐集、利用、揭露,須獲消費者明示同意: 利用DTC公司產品或服務所蒐集之基因資料,應取得同意。其同意書須載明近用對象、共享方式,以及具體利用目的。 初步測試完成後儲存生物樣本,應取得同意。 目的外利用該基因資料或樣本,應取得同意。 向服務提供商外之第三方傳輸或揭露該基因資訊或樣本,應取得同意。其同意書須載明該第三方之名稱。 分析行銷或第三方依消費紀錄所進行之促銷,應取得同意。 上開同意之取得,不可使用黑暗模式(dark patterns)誤導消費者,並必須針對資料或樣本採取合理安全維護措施。 GIPA也新增消費者權利,保障消費者近用權和刪除權,DTC公司須制定政策,使消費者易於近用基因資料、刪除帳戶與基因資料、銷毀生物樣本等,並須於消費者依法撤回同意後30日內銷毀之,不得因行使權利而有差別待遇。DTC公司若GIPA違反規定,消費者擁有私人訴訟權。
英國金融主管機關針對銀行資訊安全問題處以重罰英國金融監理機關,針對RBS集團旗下之三間銀行2012年所發生的資訊安全問題,共處以五千六百萬英鎊的罰款。 RBS、NayWest以及Ulstet的客戶於2012年6月,因為銀行執行的軟體更新發生技術上問題,在使用服務(包含線上服務)時,遇到存款結餘及付款執行的正確性問題。 針對此項資訊上的問題,英國金融行為監管局(FAC)處以四千二百萬英鎊的罰款;另一機關,英國審慎管理局(PRA)亦罕見地再以違反「金融機構應以適當風險管理系統以及合理之注意義務,有效管控其服務」規定之理由,另對該銀行處以一千四百萬的罰款。這是首次2個主管機關對於銀行未能有效辨識及管理其已暴露之資訊風險共同處罰之案例。 PRA指出,資訊風險管理系統適當的發揮功能以及控制,是一個公司健全不可或缺的部份,同時對於英國金融體系的穩定也特別重要。 FCA亦試圖開始評估銀行對於他們所曝光的資訊風險的管理程度,以及銀行的管理階層如何去掌握自己銀行,因為技術錯誤所造成的影響程度。 RBS聲明公司已經在主營運系統外建置了鏡像系統,可以繼續處理「主要客戶服務」的顧客交易;同時也可以修復主營運系統。
英國政府將設立網路兒童保護中心英國內閣辦公室指出,英國政府將設立網路兒童保護中心以協助警方與孩童保護機構,該中心主要偵查目標為利用網際網路散佈違法之兒童影像或「打扮」兒童的戀童癖人士。其宗旨在減少利用網路協助虐童的行為,而對孩童、家庭與社會產生傷害的情況。 該中心未來將隸屬於 2006 年 4 月 1 日成立之「嚴重組織犯罪局」( Serious Organized Agency = SOCA )管轄,並於該局成立之同時開始運作,由專責的警察人員協同孩童保護,並由網路工業專家負責業務之執行。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).