日本健康保險擴大遠距醫療適用對象並提高支付標準

  日本厚生勞動省對於利用電話、視訊等資通訊機器所為之遠距醫療,因應明年修正健康保險診療報酬,提高遠距醫療服務給付項目及支付標準,為了明確適用健康保險之相關要件與規定,成立研究委員會以作成相關適用指引。隨著資通訊技術發展,利用資通訊機器所為之遠距醫療漸漸普及。在擔保醫療之安全性、必要性及有效性下,為了更進一步普及並推進適當之診療,有必要整備相關法令規定。厚生勞動省於11月設置研究委員會,預定在2018年3月底前訂定「遠距醫療適用指引(情報通信機器を用いた診療に関するガイドライン)」。

  日本1948年制定之醫師法第20條規定醫師非親自診療,不得為治療等行為。此一規定迄今未修正,遠距醫療並非當時所能想像與規範。目前,厚生勞動省以函釋通知方式,對於該條之適用為相關通知與事務聯絡,以擴大遠距醫療適用之可能性。厚生勞動省於1997年第一次發出之通知(平成9年12月24日健政發第1057號厚生省健康政策局長通知),對於遠距醫療與醫師法第20條的適用關係提出基本見解,認為醫師法第20條親自診療原則規定,不一定等於直接見面診療,以代替方式而對於病患身心狀況得以獲得有用資訊下,使用遠距醫療並非違反本條親自診療規定。在本號通知「留意事項」中,對於遠距醫療之適用對象地區與病患,有以下規定:1. 初診原則上必須為面對面診療;2.直接面對面診療有困難之離島及偏遠地區;3. 對於病況穩定之病患,在確保緊急對應處理及聯絡體制下,以「別表」列舉適用之慢性疾病(例如:居家氧氣治療病患)為對象。但是本來只是例式規定的「非初診」「離島及偏遠地區」、「特定慢性疾病」,卻被解釋成限定列舉規定,導致遠距醫療適用範圍非常狹窄,變成原則禁止之情形。

  直至2015厚生勞動省再發出通知(平成27年8月10日厚生勞動省事務連絡),明確非初診、離島及偏遠地區、「別表」所列舉之慢性疾病等,僅是例式規定,對象地區及病患不限於此,以及就算是初診,直接為親自診療有困難時,基於病患要求下充分考量病患有利條件下,依據醫師之判斷,活用各種可能之工具,結合社交網路服務(SNS)、視訊影像以及電子郵件等方式組合而為適當之遠距醫療。於「別表」列舉遠距醫療之九種病患對象為,居家氧氣治療病患、居家罕見疾病病患、居家糖尿病患、居家氣喘病患、居家高血壓病患、居家過敏性皮膚炎病患、褥瘡居家療養病患、居家腦血管病患以及居家癌症病患等。

  2015年通知使得遠距醫療之適用對象範圍大為擴大,因此日本醫療院所積極整備資通訊設備環境。同時,厚生勞動省在2017年底提出之2018年度福祉預算中,明確修正健康保險診療報酬,提高遠距醫療之醫療服務給付項目與支付標準,使得利用遠距醫療為診療服務之利益大為提高,更加速提高遠距醫療之利用可能性。惟,前述2015年通知之內容,對於適用對象與診療內容,尚有不明確之處,因此邀集醫療、法學、遠距醫療專門等12名專家成立研究委員會,以訂定明確適用規則,防止未來對於病患造成不利益之判斷。

相關連結
※ 日本健康保險擴大遠距醫療適用對象並提高支付標準, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=7951 (最後瀏覽日:2025/06/19)
引註此篇文章
你可能還會想看
歐盟理事會通過爭議不斷的歐盟數位單一市場著作權指令

  為了使歐洲的著作權法規更符合數位時代及單一市場所需,歐盟執委會(European Commission)於2016年9月所提出的「數位單一市場著作權指令」(The Directive on Copyright in the Digital Single Market)提案,於今年2月13日由歐洲議會(European Parliament)與歐盟理事會(Council of the EU)、歐盟執委會達成最終協議,歐洲議會與歐盟理事會並分別於3月26日及4月15日通過提案,歐盟理事會於4月17日簽署正式指令。新指令的重點內容包含: 文字與資料探勘(Text and data mining):第3條規定,研究組織為了科學研究而需對文字與資料探勘時,得例外對著作進行重製、擷取(extraction)。 強化著作人和表演者在數位環境中的地位:第14條規定,當著作人和表演者將著作權讓與或授權給出版商後,出版商必須定期向著作人和表演者告知這些著作的利用情形。另外,第15條規定,如果著作人和表演者覺得先前約定的報酬太低時,可以要求與出版商重新磋商更公平且適當的報酬。 賦予新聞內容重製權及向公眾傳播權:規定於第11條,使用新聞的內容(尤其網路新聞)時,須向新聞出版者取得重製權及向公眾傳播權的授權。另外,本次通過的正式指令,已無之前提案中具有爭議的「須得到新聞出版者同意才能使用新聞頁面超連結」條文內容,而無先前的超連結稅(Link Tax)爭議。 網路服務提供者義務:第13條規定,網路服務提供者如Instagram、YouTube等,有義務透過有效的機制,迅速刪除未經著作權人授權許可的內容,並防止這些未經授權的內容重新上架,以保護著作權人的利益。   不過,從歐盟執委會提案之後,第13條就引起了德國民眾的強烈反彈,從今年2月最後一個禮拜開始,德國各大城市展開了一連串名為「反對歐盟著作權改革法案」(gegen EU-Urheberrechtsreform)的抗議活動,包含線上連署及上街遊行,並已擴散至其他歐盟會員國。抗議訴求認為,使用所謂的「上傳過濾器」(Upload-Filter)會對網路的言論自由和多樣性產生巨大影響,由於在實際操作上,網路服務提供者只會依據著作權人所提供的著作授權清單,利用上傳過濾器自動過濾未得到授權的內容,因此經合法使用其他著作後所創作的新著作(例如文章內含有合法引用的內容),可能會成為被過濾、刪除的對象,因為上傳過濾器可能無法判別法定例外的合法使用。所以上傳過濾器被認為是有爭議的審查手段。   雖屢有爭議,但本次通過數位單一市場著作權指令,使歐盟的著作權法規更能適應當今數位世界,在音樂串流服務、影音點播平台、新聞彙整平台、以及各種社群平台已成為人們接觸著作和新聞的主要門戶時,加強網路使用者享有的自由和權利,創作者也將獲得更好的保護和報酬,以創造更繁榮的網路經濟。

英國、韓國共同簽署資料適足性協議,以期促進資料經濟商機

  英國數位文化傳媒和體育部(Department for Digital, Culture, Media & Sport, DCMS)於2022年11月23日發布新聞稿,宣布英國與韓國共同簽署的資料橋接規則(The Data Bridge Regulation)於同年12月19日正式生效。在此之前,英國於2022年7月5日已與韓國個人資料保護委員會(Personal Information Protection Commission, PIPC)簽署資料適足性協議(Data Adequacy Agreement),以促進兩國未來進行資料傳輸。這也是英國在脫歐後,首次與其他國家簽訂的資料協議,而依據過往兩國的數位貿易統計資料,本次協議預估將帶來超過14.8億英鎊的商機。   英國DCMS部長更進一步表示,未來將積極與其他國家的戰略夥伴,開展資料經濟商機。英國於聲明中強調參與全球跨境隱私規則論壇(Global CBPR Forum)的決心,以加速資料共享、促進創新與產學研究,聲明摘要如下:   1、本協議為加強英國與韓國資料共享的里程碑,其宗旨為創建更值得信賴的資料共享環境,以及共創更安全的資料傳輸方式。   2、本協議耗時約一年完成討論與擬訂,並期待能透過該協議,深化並擴展英國與韓國之間的資料夥伴關係。   3、英國與韓國政府承諾將促進資料在國際商業、創新及研究等領域的發展。在加強個人資料保護的前提下,促進資料的合理利用。   4、在資料自由傳輸的基礎上,本協議將提供更完善且可持續推動的全球資料生態系統。雙方政府承諾共同改進數位時代下個資料保護框架,如英國發布國家資料戰略(National Data Strategy)、修訂UK GDPR相關規範,以及韓國PIPC提出個人資料保護法部分條文修正案等具體措施。   英國政府肯認應與其他戰略合作夥伴開展多邊倡議,如參與全球跨境隱私規則論壇(Global CBPR Forum)及經濟合作暨發展組織(OECD),共同推動可信賴之政府存取資料(Trusted Government Access to Data)的目標。

日本修正產業競爭力強化法,協助業界因應COVID-19後之新日常

  日本內閣於2021年2月5日通過產業競爭力強化法修正案(下稱本法),並於同年6月經國會通過。本次修正目的,為因應COVID-19所帶來影響與「新日常」(新たな日常,意指日本與各國因應COVID-19疫情影響,調整並重新建構生活、工作等基本社會活動方式的框架,追求安心、安全生活的同時擴大經濟活動),推動企業的長期化改革。對此,本法修正視為後COVID-19時代首要目標者,具體包含綠色社會(グリーン社会)、數位化(デジタル化)、以新日常為前提進行產業轉型等。 基此,此次本法的修正重點如下: (1)邁向綠色社會:企業提出與實現「碳中和」(カーボンニュートラル)相關之計畫,經主管機關認可後,該企業導入具零碳排(脱炭素化)效果產品之生產設備或生產程序、或對之進行投資,最多可免除10%的稅額,或得在提列折舊費用時,最高額外計提導入價格50%的特別折舊(特別償却)費用;企業為減少碳排放而向金融機構融資,如其能達成所設定的計畫期中目標,最多可獲0.2%的利息補助。 (2)因應數位化:企業如提出全公司的數位化商業模型改革計畫,並經主管機關認可,該企業針對應用雲端技術所進行投資,最多可免除5%稅額、或額外提列30%之特別折舊費用。 (3)企業改制以適應新日常:企業如提出應對新日常之事業再建構計畫,獲主管機關認定符合其事業類型之數位化指針(由主管機關擬定頒布)的要求,該企業於2020年與2021年度的經營赤字,直至轉為獲益之前(最長為5年),其應課稅所得的免除額最高提升為100%。 (4)允許上市公司舉行純虛擬(バーチャルオンリー)形式的股東會:創設公司法(会社法)以外之特別法規定,允許上市公司得例外以線上、無法明確定義召開地點的形式,舉行股東大會。 (5)支援新創事業:創設民間對於大型新創事業融資的債務保證制度,同時放寬國內證券投資基金對海外新創事業投資的50%上限規定。 (6)企業再生(事業再生)措施彈性化:因應COVID-19疫情對業界造成的打擊,原企業再生須透過訴外紛爭解決機制進行者,該個案得在5分之3的債權人同意減免金融債權額時,轉由法定之簡易再生程序辦理,加速企業提出的再生計畫獲得認可。 (7)將監理沙盒(規制のサンドボックス)轉型為常態型制度:監理沙盒制度之原主管法規,為生產性提升特別措施法(生産性向上特別措置法)。該制度要旨為企業得向主管機關提出計畫申請,針對個別議題或領域進行法規豁免之創新實驗;企業執行上述計畫所獲得之報告或資料,應提供予主管機關,作為檢討修訂相關法規之參考。該法因明定自施行日起三年內廢止之落日條款,預定於2021年6月廢止。因之,本次產業競爭力強化法修正時,配合納入監理沙盒制度的相關條文,而實質將其改為永久性實施之制度。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP