歐盟執委會於2023年2月1日公布「綠色政綱產業計畫(Green Deal Industrial Plan)」,該計畫主要包含淨零產品產業建立、國家補助、強化供應鏈、資金等綠色轉型重要政策。「綠色政綱產業計畫」將透過以下四大支柱協助歐盟進行綠色轉型。
(1)建立可預測、簡化且一致的管制環境
歐盟將提出《淨零產業法(Net-Zero Industry Act)》草案簡化管制框架來支持電池、風車、熱汞、太陽能板、電解、碳捕捉等技術;本法案將分析各產業部門後,建立各部門2030年能力目標,確保產業供應鏈不會遭遇瓶頸,並縮短淨零產品工廠選址和中小企業補助核准流程時間,以及增強核准流程的可預測性。另外歐盟並將提出《關鍵原物料法(Critical Raw Material Act)》草案,以管制生產淨零產品的關鍵物資,並透過回收、來源多樣化等方式來降低歐盟對第三方國家的依賴。
(2)更快的提供充足資金
歐盟將放寬各會員國的補助程序,並提高補助金額上限。另外因應中國和美國對淨零產業的補助,本計畫將提高歐盟與歐盟會員國的淨零產業補助額度,讓補助效果能和其他非會員國的補助達同樣程度。
(3)人才訓練與技術強化
歐盟將透過人才訓練、認證和補助來增加綠色及數位轉型技術之勞動力。
(4)為建立韌性供應鏈開放貿易
歐盟將加強與非會員國的自由貿易協定,增加關鍵原物料來源。歐盟也將透過《外國補助規則(Regulation on Foreign Subsidies)》保護歐盟市場的公平性、調查非會員國的傾銷行為、扭曲市場的補助。
本文為「經濟部產業技術司科技專案成果」
澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年11月發布「2018-2019年數位健康年報」,其中針對「我的健康紀錄系統」(My Health Record System)日前發生資料外洩事件提出檢討及隱私建議。 「我的健康紀錄系統」於2012年開始由澳洲數位健康局(Australian Digital Health Agency)負責維運,所有健康報告以電子形式通過網站存檔或讀取,包括處方藥紀錄、醫生診療記錄、影像檢查以及其它測試紀錄等,所有資訊將置於網路並授權醫療專業人員,例如醫生、藥劑師、醫院工作人員和專職醫療人員(例如護士或物理治療師),均可登錄查詢。 「我的健康紀錄系統」原先以民眾自願選擇加入模式運作,以選擇性線上註冊方式概括同意健康資料存取。隨後為促進醫療產業發展,澳洲政府宣布「我的健康紀錄系統」全國適用並提供退出機制至2019年1月31日。而2018年澳洲修訂「我的健康紀錄法」(My Health Records Act 2012)強化個人資料管理相關規範,例如:提供永久刪除權、不得適用於保險目的、違反關鍵隱私保護而增加民事和刑事處罰等。 「2018-2019年數位健康年報」指出,隨著「我的健康紀錄系統」於2019年2月從選擇性註冊模式變為退出模式,關於隱私疑慮的查詢和投訴大幅增加。2018年至2019年OAIC收到57件投訴案,OAIC更對數位醫療產業中的受監管企業進行隱私評估,包括私人醫院、藥房等。為解決民眾疑慮,「我的健康紀錄法」修訂賦予永久刪除權,使投訴數量開始遞減,OAIC亦為醫療服務提供者發布有關保護患者個人健康資料相關指引,並與衛生部門組織合作,促進良好的隱私保護觀念,以增進健康服務提供者對預防和應對資料外洩的理解。
英國政府提交予國會「人工智慧監管規範政策報告」英國政府由數位文化媒體與體育大臣(Secretary of State for Digital, Culture, Media and Sport)與商業能源與工業策略大臣(Secretary of State for Business, Energy and Industrial Strategy)代表,於2022年7月18日提交予國會一份「人工智慧監管規範政策報告」(AI Regulation Policy Paper)。內容除定義「人工智慧」(Artificial Intelligence)外,並說明未來政府建立監管框架的方針與內涵。 在定義方面,英國政府認為人工智慧依據具體領域、部門之技術跟案例有不同特徵。但在監管層面上,人工智慧產物則主要包含以下兩大「關鍵特徵」,造成現有法規可能不完全適用情形: (1)具有「適應性」,擅於以人類難以辨識的意圖或邏輯學習並歸納反饋,因此應對其學習方式與內容進行剖析,避免安全與隱私問題。 (2)具有「自主性」,擅於自動化複雜的認知任務,在動態的狀況下持續判斷並決策,因此應對其決策的原理原則進行剖析,避免風險控制與責任分配問題。 在新監管框架的方針方面,英國政府期望所提出的監管框架依循下列方針: (1)針對技術應用的具體情況設計,允許監管機構根據其特定領域或部門制定和發展更詳細的人工智慧定義,藉以在維持監管目標確定與規範連貫性的同時,仍然能實現靈活性。 (2)主要針對具有真實、可識別與不可接受的風險水準的人工智慧應用進行規範,以避免範圍過大扼殺創新。 (3)制定具有連貫性的跨領域、跨部門原則,確保人工智慧生態系統簡單、清晰、可預測且穩定。 (4)要求監管機構考量更寬鬆的選擇,以指導和產業自願性措施為主。 在跨領域、跨部門原則方面,英國政府則建議所有針對人工智慧的監管遵循六個總體性原則,以保障規範連貫性與精簡程度。這六個原則是基於經濟合作暨發展組織(OECD)的相關原則,並證明了英國對此些原則的承諾: 1.確保人工智慧技術是以安全的方式使用 2.確保人工智慧是技術上安全的並按設計運行 3.確保人工智慧具有適當的透明性與可解釋性 4.闡述何謂公平及其實施內涵並將對公平的考量寫入人工智慧系統 5.規範人工智慧治理中法律主體的責任 6.釋明救濟途徑 除了「人工智慧監管政策說明」外,英國政府也發布了「人工智慧行動計畫」(AI Action Plan)文件,彙整了為推動英國「國家人工智慧策略」(National AI Strategy)而施行的相關行動。前述計畫中亦指出,今年底英國政府將發布人工智慧治理白皮書並辦理相關公聽會。
國防訓儲制將有重大變革,研發納入替代役行政院跨部會會議審查通過替代役條例修正草案,將研發役納入替代役,取代現行的國防訓儲制,惟研發替代役規劃內容並不等同於現行國防訓儲制,例如:國防訓儲限制預官申請,但研發替代役並未限制,此將使海外人才、海外小留學生等符合科技研發資格的碩博士,均可申請回台進入科技廠商服研發替代役。 此外,國防訓儲制在入伍短暫基礎訓練後,就如同後備軍人進入民間科高科技企業領一般工程師高薪,並享有分紅、配股,被外界抨擊為不公,未來研發替代役將改革這項缺點。將來申請服研發替代役者,在一年多的法定義務役期過後,超過的服役期限替代役男始可領取一般工程師薪水。 研發替代役役期除一年四個月法定義務役外,最長可申請延長三年,但期限要報院核定,具有彈性。至於科技大廠最關心的員額數量,仍將依內政部替代亦審議委員會審查各需用機關替代議員額需求要點第3點進行審查並視兵源調度,然員額可望逐年提升。 內政部並將進一步訂定研發替代役申請辦法,使海外人才可透過網路申請,預料研發替代役將可吸引海外學人歸國貢獻研發,對提升產業競力將有助益。替代役修正修正草案送行政院院會通過後,將送交立院審議,行政院表示會積極爭取法案在本會期過關,最快九十六年可實施。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。