日本智慧交通挑戰計畫

  日本經濟產業省於2018年召開「IoT和AI可能衍生之新型態交通服務研究會」(IoTやAIが可能とする新しいモビリティサービス関する研究会),並於2019年4月公布「朝向新型態交通服務之活性化」(新しいモビリティーサービスの活性化に向けて)報告;國土交通省亦自2018年底起召開「都市與地方新型態交通服務懇談會」(都市と地方の新たなモビリティサービス懇談会),於2019年3月公布中間結果。經產省和國土省根據上述會議結論,自2019年4月起,發起支援地方政府挑戰推動新型態交通服務之新計畫「智慧交通挑戰」(スマートモビリティチャレンジ)。

  「智慧交通挑戰」計畫之目的,在於促使地方政府與企業合作,以實現自動駕駛社會,並透過新型態交通服務解決既有交通問題和加速地方活性化,其具體措施包括︰(1)透過設置「智慧交通挑戰推進協議會」及舉辦論壇,促進地方政府和企業間共享資訊,形成工作網路;(2)經濟產業省補助新型態交通服務實用化、計畫制定和效果分析等計畫;(3)國土交通省補助MaaS等新型態交通服務實驗,以及建構以解決地區交通服務為目的之模型等計畫。經產省與國土省分別自4月起對外公開募集提案,最終於75個提案中選出28個計畫,將於今年起陸續施行。

相關連結
※ 日本智慧交通挑戰計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=5&d=8282 (最後瀏覽日:2021/04/12)
引註此篇文章
你可能還會想看
自動駕駛車輛之分級與責任

  所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。   而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。   德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。   故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。   修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。

「自動駕駛車(self-driving car)」可否合法上路?

  「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。   目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。   而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。

美國「國家製造創新網絡智慧財產指南」

  美國之「國家製造創新網絡智慧財產指南」(Guidance on Intellectual Property: National Network for Manufacturing Innovation) 係由先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於2015年3月公布。本指南係就智財策略之擬定,向製造創新之機構提供相關原則與彈性的框架,並同時釐清關鍵之智慧財產權利。此所稱之製造創新機構,係指2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014)第34條(c)項所界定之機構,亦即為因應先進製造相關挑戰並協助製造業保持與擴展工業產品與就業機會之公私合營機構。   「國家製造創新網絡智慧財產指南」大別為9類共14項原則:(1)機構層級之智慧財產管理;(2)專案層級之智慧財產管理;(3)智慧財產所有權;(4)機構研發之智慧財產(Institute-Developed Intellectual Property, IDIP)權利;(5)非機構研發之智慧財產權利;(6)基礎智慧財產;(7)資料權利與管理;(8)出版權;(9)政府權利。以資料權利與管理為例,該類之下的第一項原則要求機構應研擬符合出口管制法規之資料計畫,並在計畫中界定與區分機構內部資料之類型,以及為維持機密性與網路安全所需之資料近用與管控。   我國於2015年9月公布「行政院生產力4.0發展方案」,發展方案於「掌握關鍵技術自主能力」之主策略下,由經濟部技術處主政推動成立「台灣生產力4.0研發夥伴聯盟(Taiwan Productivity 4.0 Partnership)」,透過政府民間之合作提升關鍵技術自主能力的同時,智慧財產權利相關配套措施自屬重要。

日本內閣官房提出未來投資戰略報告加速機器人實用及活化

  日本內閣官房日本經濟再生總合事務局(内閣官房日本経済再生総合事務局)在2017年6月9日第10次「未來投資會議」中提出未來投資戰略2017報告(未来投資戦略2017~Society 5.0 の実現に向けた改革~),在成長的戰略成果(5)日本第四次產業革命及新經濟的展開中,分別對於機器人實用、物聯網(IOT)、大數據(BIG DATA)、人工智慧(AI)等提出成果及未來計畫。   機器人加速實用化:首先,機器人廣泛利用在商業設施、機場等日常生活空間,於2016年9月羽田機場設置機器人實驗室「Haneda Robotics Lab」,利用機器人改善服務並補充勞動力。有關打掃清潔、協助移動、查詢服務等17種機器人,將進行實證實驗。而路面協助行走型機器人「RT.1」已經完成,於2015年生活協助型機器人之安全性得到國際認證,其後發展之「RT.2」將使用於長期照顧層面。其次,開發農業使用之自動駕駛拖車,並提供工作實際狀況和土壤狀況之電子管理服務。今年6月開始商業化之自動駕駛顯示器,可以監控自動駕駛耕作機器進行自動耕作等。在物流管理方面,於2018年將於山間部等地區進行無人機的包裹遞送,2020年將在都會區全面無人包裹遞送。預計將與日立等相關公司,進行物流管理系統之開發及活用福島機器人測試場域。

TOP