澳洲隱私專員主張應從嚴認定個人資料去識別化

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)專員今年(2016)4月發表聲明認為,在符合特定條件之情形下,亦即,去識別化過程符合OAIC認定之最高標準時,去識別化後之資料不適用「1988隱私法案」(Privacy Act);澳洲企業組織目前所進行之個人資料去識別化,是否已符合「1988隱私法案」之規範要求,OAIC仍持續關注。OAIC近期準備提出去識別化認定標準之指引草案。

  澳洲「1988隱私法案」揭示了「澳洲隱私原則」(Australian Privacy Principles, APPs),就非公務機關蒐集、利用、揭露與保存設有規定,APPs第6條更明文限制非公務機關揭露個人資料,於特定情況下,APPs允許個人資料經去識別化後揭露。例如,APPs第11.2條規定,若非公務機關當初之蒐集、利用目的已消失,須以合理方式將個人資料進行銷毀或去識別化。

  如非公務機關係合法保有個人資料,即無銷毀或去識別化義務;此外,若所保有個人資料屬健康資料者,因係澳洲政府機關以契約方式委託非公務機關,非公務機關亦無銷毀或去識別化義務。應注意者,APPs原則上禁止非公務機關基於學術研究、公共衛生或安全之目的,主動蒐集個人健康資料 (APPs第16B(2)條),同時亦禁止基於學術研究、公共衛生或安全目的,就保有之個人資料進行去識別化 (APPs第16B(2)(b)條)。如非基於前述目的,且符合APPs第16B(2)條之要件者,非公務機關始得基於研究、公共衛生或安全目的蒐集個人健康資料 (APPs第95A條)。

  其他如「稅號指引」(Tax File Number Guidelines)、隱私專員所提「2014隱私(財務信用有關研究)規則」(Privacy Commissioner’s Privacy (Credit Related Research) Rule 2014) 等,均就個人資料去識別化訂有相關規範。

  未來以資料為導向之經濟發展,將需堅實的隱私保護作為發展基礎,澳洲去識別化個人資料認定標準之提出,以及標準之認定門檻,殊值持續關注。

相關連結
※ 澳洲隱私專員主張應從嚴認定個人資料去識別化, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=7256 (最後瀏覽日:2024/02/26)
引註此篇文章
你可能還會想看
英國無線電頻譜管理改革政策(上)-政策源起與目標

歐盟執委會提出《淨零產業法》草案,促進歐盟淨零技術的發展

歐盟執委會(European Commission)於2023年3月16日提出《淨零產業法(Net-Zero Industry Act)》草案,以擴大歐盟潔淨技術的製造,並為歐盟的潔淨能源轉型作好準備,同時亦為綠色政綱產業計畫的一部分。其中適用之淨零技術則包含太陽光電和太陽熱能、陸域風電和離岸再生能源、電池和儲能設備、熱泵和地熱能、電解槽和燃料電池、沼氣和生質甲烷、碳捕捉利用和封存、電網技術、永續替代燃料、少量核廢的新興核能、小型反應爐,以及相關的先進燃料。而推動措施之重點如下: (1)建立有利發展的環境 將加強資訊的流通、減少成立專案的行政成本、簡化核准許可程序,以及設立單一聯繫窗口(One Stop Shop),以發展利於投資淨零技術的環境。另外,也將優先考慮能加強歐盟工業韌性和競爭性的淨零排放策略計畫,例如能安全儲存被捕捉之二氧化碳的場址規劃和建置。 (2)加速二氧化碳的捕捉 設定歐盟2030年的目標-二氧化碳儲存場址每年的注入容量應達到50百萬公噸(Mt),並要求歐盟石油和天然氣的生產業者需按其產量之比例做出貢獻,以促進二氧化碳捕捉和封存的發展,作為經濟上可行的氣候解決方案,特別是對於難以減少排放的能源密集產業。 (3)促進業者進入淨零市場 應在公共的採購和拍賣中,要求政府需考量產品的永續性和韌性並建立標準,促進公私部門對於淨零技術的需求,鼓勵業者們發展淨零技術,以提升該技術的供應多樣性。 (4)提升技能 設立專門的歐盟淨零學院,為潔淨能源轉型提供成熟的勞動力;並將與成員國、產業和其他利害關係人合作,設計培訓課程,重新訓練以及提升相關人才的技術能力。 (5)推動創新 支持成員國設立監理沙盒,在靈活的監管條件下對於新興的淨零排放技術進行測試以促進創新。 (6)設置淨零歐洲平台 建立淨零歐洲平台(Net-Zero Europe Platform)協助歐盟執委會和成員國進行合作和交換資訊。並且,透過該平台確認計畫之財務需求、瓶頸和最佳方案,以促進淨零相關產業的投資。

2018年直布羅陀公布一系列DLT應用商業活動管制規範

  英國海外屬地直布羅陀,針對透過與日俱增的首次發行代幣(Initial Coin Offerings, 簡稱ICO)募集商業活動,早在2017年9月,其金融服務委員會(Gibraltar Financial Service Commission, 簡稱GFSC)已公布官方聲明,警告投資人運用分散式帳本技術(Distributed Ledger Technology,簡稱DLT)之商業活動,如:虛擬貨幣交易或ICO等具高風險且投機之性質,投資人應謹慎。   GFSC又於2018年1月公布「分散式帳本技術管制架構」(Distributed Ledger Technology Regulatory Framework),凡直布羅陀境內成立或從其境內發展之商業活動,若涉及利用DLT儲存(store)或傳輸(transmit)他人有價財產(value belong)者,均須先向GFSC申請成為DLT提供者(DLT provider),並負擔以下義務: 應秉持誠信(honesty and integrity)進行商業活動。 應提供客戶適當利息,且以公平,清楚和非誤導方式與其溝通。 應準備相當金融或非金融資源(non-financial resources)。 應有效管理和掌控商業活動,且善盡管理人注意義務(due skill, care and diligence),包含適當地告知客戶風險。 應有效配置(arrangement)客戶資產和金錢。 應具備有效公司治理,如:與GFSC合作且關係透明。 應確保高度保護系統和安全存取協定。 應具備系統以預防、偵測且揭發金融犯罪風險,如:洗錢和資恐。 應提供突發事件預備方案以維持商業活動繼續進行。   GFSC和商業部(Ministry of Commerce)又於2018年2月聯合公布,將於第二季提出全世界第一部ICO規範,管制境內行銷(promotion)、販售和散布數位代幣(digital token)行為,強調贊助人須先授權(authorized sponsor),並有義務確保遵守有關資訊揭露和避免金融犯罪之法律。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP