於2017年6月20日,歐盟對於歐盟成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析,並發布2017年度歐洲創新記分板(European Innovation Scoreboard, EIS)年度報告。它涵蓋歐盟成員國以及冰島、以色列、前南斯拉夫的馬其頓共和國、挪威、塞爾維亞、瑞士、土耳其和烏克蘭。在全球少數指標中,EIS也對澳大利亞、巴西、加拿大、中國、印度、日本、俄羅斯、南非、韓國及美國進行了評估。
EIS 2017排名與以前的版本不同,EIS 2017的測量框架由27個指標組成,區分4個主要類別的10個創新層面:
EIS顯示歐盟的創新績效繼續增長,特別是由於人力資源的改善、創新型環境、自有資源投資以及有吸引力的研究體系。而瑞典仍然是歐盟創新領導者,其次是丹麥、芬蘭、荷蘭、英國以及德國,創新指數比歐盟平均值高出百分之二十。立陶宛、馬爾他共和國、英國、荷蘭以及奧地利則是增長速度最快的創新者。在全球創新比較中,歐盟僅次於加拿大及美國,但韓國及日本正急起直追,而中國在國際競爭中是發展最快的國家。
本文為「經濟部產業技術司科技專案成果」
英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。
因應2020年社會實現自動駕駛,日本訂定自動駕駛制度整備大綱日本IT綜合戰略本部及官民資料活用推進本部於4月17日公佈「自動駕駛制度整備大綱」。大綱設定2020年至2025年間,日本社會實現自動駕駛下,所需檢討修正之關連法制度。 本大綱中,係以2020年實現自動駕駛至等級4為前提(限定場所、速度、時間等一定條件下為前提,系統獨自自動駕駛之情形),以在高速公路及部分地區之道路實現為條件設定。社會實現自動駕駛有以下課題需克服: 道路交通環境的整備:以自駕系統為行駛,一般道路因為環境複雜,常有無法預期狀況發生,導致自駕車的電腦系統無法對應。 確保整體的安全性:依據技術程度,設定一般車也能適用之行駛環境、設定車輛、自動駕駛之行駛環境條件以及人之互相配合,以達成與一般車相同之安全程度為方針下,由關係省廳間為合作,擬定客觀之指標。此一指標,並非全國一致,應就地方之特性,設定符合安全基準及自動駕駛行駛環境條件,建構整體確保安全之體制。 防止過度信賴自駕系統:訂定安全基準,使日本事件最先端自動車技術擴及於世界,訂定包含自駕系統安全性、網路安全等自動駕駛安全性要件指針。 事故發生時之法律責任:自動駕駛其相關人為駕駛人、系統製造商、道路管理者等多方面,其法律責任相對複雜化。現在係以被害人救濟觀點,至等級4為止之自動駕駛,適用自動車損害賠償責任險(強制責任險)方式,但是民法、刑法及行政法等法律全體之對應,仍為今後之課題,必須為早期快速處理。為了強化民事責任求償權行使、明確刑事責任之因果關係、並實現車輛安全性確保、避免所有人過度負擔等,車輛行駛紀錄器之裝置義務化、事故原因究明機制等,關係機關應合作為制度檢討。 本大綱最後並提出,在自動駕駛技術快速發展下,就其發展實際狀況應為持續半年1次召開會議檢討檢討。
日本特許廳利用人工智慧審查專利與商標申請日本特許廳(Japan Patent Office,JPO)從去(2016)年12月開始,與NTT Data公司合作,使用人工智慧(Artificial Intelligence,簡稱AI)來系統化的回答有關專利問題,且依成果顯示,與原先運用人力回復的成果相當;JPO因此決定於今(2017)年夏天開始,將AI技術分階段應用於專利及商標的審查案,並期望能於下一會計年度(2018年4月至2019年3月),在審查業務中全面運用AI技術。 JPO指出,透過AI技術能有助於將專利及商標審查程序中繁冗的檢索程序簡化,以專利審查為例,可搜尋大量文件與檔案,進行專利先前技術檢索,以確保相關技術尚未獲得專利保護,同時也可以協助專利分類;此外,商標審查亦可利用AI之圖像辨識技術比對圖片及標誌,找出潛在的類似商標。 AI技術被證實能提升審查效率,並減輕審查人員檢索與比對部份的工作負擔,有助於抑制人工審查的長時間工作型態,根據2017年日本特許廳現況報告(特許庁ステータスレポート2017),於導入AI技術後,原本從申請到審查完成平均約2年左右之審查時間,期望可在2023年將審查期間降到14個月,讓日本成為智慧財產系統審查最快且品質最好的國家之一。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
德國公布最新DiGA指引,針對「系統數據分析」作補充說明德國聯邦藥品暨醫療器材管理署(Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)於2022年3月18日發布3.1版《數位健康應用程式指引》(Digitale Gesundheitsanwendungen(DiGA) Leitfaden),主要針對3.0版未詳盡之「系統數據分析」(Systematische Datenauswertung)部分作補充說明(參考資料四,頁152以下)。 德國於2019年12月即透過《數位化創新醫療服務法》(Digitale-Versorgung-Gesetz, DVG)修訂《社會法典》第五編(Sozialgesetzbuch Fünftes Buch, SGB V)關於法定健康保險之規定,賦予數位療法(Digital Therapeutics, DTx)納保給付的法律基礎,BfArM並透過《數位健康應用程式管理辦法》(Digitale Gesundheitsanwendungen-Verordnung – DiGAV)建構處方數位療法(Prescription Digital Therapeutics, PDT)的管理架構並發布DiGA指引,使數位療法得以快速被納入法定健康保險給付範圍。 開發商之數位健康應用程式取得歐盟醫療器材規則(Medical device regulation, MDR)CE Mark I & IIa級認證之後,得向BfArM提交申請,若該應用程式「符合法規要求」(Anforderungen),並具有「積極醫療效果」(Positive Versorgunseffekte),則該應用程式最快可以在三個月取得永久許可,通過許可將被列入DiGA目錄(DiGA-Verzeichnis)當中;而若僅「符合法規要求」則會被暫時收錄,需在十二個月內補上「積極醫療效果」的證據或報告,以取得永久許可,否則會從DiGA目錄中刪除。DiGA目錄中的應用程式(包含臨時許可)會納入單一支付標準(Einheitlicher Bewertungsmaßstab, EBM),法定健康保險將依該標準表列之金額給付給製造商。 目前DiGA目錄上共有36款應用程式,當中13款取得永久許可、19款取得臨時許可、另有4款被刪除;三分之一的應用程式係用於治療焦慮或憂鬱等精神疾病,其他尚包括治療耳鳴或肥胖症等疾病。病患近用DiGA目錄中之應用程式的途徑有二:透過醫師開立處方,或是依照醫師診斷之病症自行在DiGA目錄中查找對應的應用程式後提交處方申請。法定健康保險將會依照該應用程式被使用之次數,對照EBM所列之價額後,給付費用予開發商。 「本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw)」