為了確保網絡安全,歐盟頒佈新的網路安全計畫

  網絡活動無遠弗屆,其所帶來的影響也逐漸引起世界各國的關注。依據歐盟針對網絡安全現況所做的調查發現,首先,現行估計存有150,000隻電腦病毒在網路間流竄,並已造成148,000部電腦受到威脅;第二,世界經濟論壇(World Economic Forum)指出,在未來的十年內,主要重大資訊基礎設施估計將有10%遭到破壞,其將導致2500億美金的損失;第三,著名資安公司(Symantec與McAfee)估計,全世界因網路犯罪而受害者,每年將會損失2900億歐元。相反地,因網路犯罪而受益者,其獲利將可高達每年7500億歐元;第四,依據 Eurobarometer在2012年針對網絡安全的民調指出,38%歐盟網路使用者因網絡安全因素已改變他們的網路行為方式;74%使用者同意,成為網絡安全受害者的風險已經逐漸增加;12%使用者已經遭受線上詐欺且89%使用者已避免在網上揭露個人資料;第五,據網絡暨資訊安全(NIS)的公眾諮詢發現,56.8%受訪者指出,在過去一年已經歷NIS事件對其網絡活動所帶來的嚴重影響;第六,Eurostat figures指出,直到2012年一月,在歐盟境內的企業僅有26%已經制定出完整的ICT安全政策。

 

  有鑑於網路安全風險所帶來的效應已漸受重視,歐盟執委會(European Commission)會同歐盟外交暨安全政策高級代表(High Representative of the Union for Foreign Affairs and Security Policy共同發佈網絡安全策略,並計畫延引出歐盟執委會在NIS面向上的新指令(directive)。新的歐盟網絡安全策略,名為「開放、安全與可靠網絡空間」,代表著歐盟在預防和反應網絡攻擊和侵擾問題上的全面性預見。在該策略中,包含五個重大優先處理事項:

一、達到網絡韌性(Achieving cyber resilience)

二、徹底減少網路犯罪(Drastically reducing cybercrime)

三、針對一般安全暨防禦政策,發展網絡防禦政策和能力(Developing cyber defence policy and capabilities related to the Common Security and Defence Policy (CSDP))

四、對網絡安全發展出企業性和技術性資源(Developing the industrial and technological resources for cyber-security)

五、為歐盟建立一個完整的國際網絡空間政策與促進歐盟核心價值(Establishing a coherent international cyberspace policy for the European Union and promoting core EU values)

 

  為了達成歐盟網絡安全策略所形塑的優先事項,歐盟執委會亦計畫針對NIS來頒佈新的指令以落實策略項目,其中包含,首先,要求歐盟會員國必須採納NIS策略且指定國家級機關(需具有足夠人力和財務資源)來預防、處理和回應NIS風險與事件;第二,透過安全基礎設施和組成一般性的同儕審議,在歐盟會員國與執委會間建立合作機制來分享NIS風險和事件的早期預警;第三,某些領域重大基礎設施的運作者(金融服務、交通、能源或健康)、資訊社會服務的推動者(app商店電子商務平台、線上支付、雲端運算、搜尋引擎、社群網絡)和公家行政部門必須在其核心服務上,採納風險管理作法和報告主要網絡安全事件。

 

  從歐盟網絡安全策略和執委會計畫頒佈的NIS指令可以發現,歐盟對於新世代的網絡安全風險已經有完整的預見與具體的因應措施。針對新型態的網絡安全威脅,我國如何能及早適時預警並作出相應的防範機制,以確保產業經濟、公共交通、資訊工業和國防安全等不會受到外部威脅,將是我國政府必須先行正視的問題。

相關連結
※ 為了確保網絡安全,歐盟頒佈新的網路安全計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&i=72&d=6261 (最後瀏覽日:2019/08/17)
引註此篇文章
你可能還會想看
美國FTC以廣告不實的理由對二款具有診斷功能的醫療app開罰

  美國FTC於2月23日對於兩款聲稱具有診斷能力的醫療app進行裁罰,理由是這兩款app宣傳不實資訊,故應予下架並裁處罰鍰。   Melapp與Mole Detective兩款app,均係付費app,售價大約在1.99至4.99美元不等,宣稱只要使用者從不同角度拍下自己身上的痣,app就能夠判斷這個痣屬於黑色素瘤(Melanoma,為一種罕見的皮膚癌類型,且惡性程度高)的機率,app將罹患黑色素瘤的風險區分為:高、中、低三級。但FTC認為業者的說法並沒有足夠的臨床依據加以證明,因此涉及廣告不實的行為。截至目前為止,Melapp與Mole Detective的開發業者都已經繳納罰鍰,但發行商L-Health拒絕繳納這項罰款,因此FTC的委員會在經過表決之後,決定在2015年2月23日向北伊利諾州地方法院提起訴訟,請求法院執行此項由FTC作成的裁罰。   具有診斷效果的app在美國其實開發已久,但在此案前,尚未見到行政機關對之積極的加以管制,此次由FTC出面對於廣告不實的部分加以裁罰,而非由主管藥物、醫材的FDA進行裁罰,或許與眾人的想像不同,但從FTC的這個行動,我們也發現美國政府已開始關切此類宣稱具有醫療診斷效果的app,醫療app未來的發展情勢將會如何,特別是本案中將被FTC起訴的L-Health會不會再另行提起其他法律爭訟,以確保其產品在市面上的合法性?毋寧是未來世界各地醫療app發展的重要參考資訊。

美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)

  美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。   聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。   政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。   因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下: 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。 要求聯邦政府利用開放資料來強化其決策機制。 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。) 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。

美國聯邦通訊委員會發布公告重申自動簡訊發送適用電話消費者保護法

  聯邦通訊委員會(Federal Communication Commission, FCC)於2016年11月18日發布一項標題為Robotext Consumer Protection的執法諮詢文件。該文件就自動發送簡訊(Autodialed text messages,又稱robotexts)於電話消費者保護法(Telephone Consumer Protection Act of 1991, TCPA )內的適用予以釐清。   在該執法諮詢文件內,解釋TCPA法條中對於自動撥號系統定義為任何可以儲存或是產出號碼並自動撥打的設備。該法對於自動撥號系統之限制,包含通話(call)、預錄語音(prerecorded calls)及簡訊(texts),除非已取得接收方的明示同意(prior express consent),或符合下列狀況之一,方得以自動撥號系統為之: (1) 基於緊急狀況, (2) 在依循消費者隱私保護的情況下,對終端使用者為免費且獲得FCC的豁免, (3) 單純為回收對聯邦所負擔的債務、或其所保證的債務。   值得注意的是,聯邦通訊委員會針對當下網路科技發展出的訊息傳送模式做出解釋,簡訊apps、以及任何符合TCPA自動撥號定義的「網路至電話之簡訊傳送」(Internet-to-phone text messaging)等兩種情況亦納入TCPA的適用。因此,發送方主張對方已為事前同意者,應負擔舉證責任,並使消費者透過合理方式隨時取消其同意;於其主張不想再收到任何自動發送簡訊後,該發送方應立即發送一封簡訊以確認接收者的「選擇退出」要求(opt-out request)。   再者,對於已移轉的門號進行自動簡訊之發送,不論發送方是否有認知該門號換人持有,在未經該門號持有人同意的情況下,發送方至多只能對該號碼自動發送一封簡訊;如之後再度自動發送簡訊,即判定違反TCPA規範。   FCC此份文件雖從保護消費者的立場出發,但所設條件明顯苛刻,因此引發諸多爭議。此外引人注意的是,此文件發布前的一個月,ACA International v. FCC一案才於10月19日結束言詞答辯,該案爭點主要為FCC是否不當擴張適用TCPA,此案後續可用以追蹤該案聯邦法院是否肯認FCC對於TCPA的適用觀點。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP