美國國防部「人工智慧國防運用倫理準則」

  美國國防部(Department of Defense)於2020年2月採納由美國國防創新委員會(Defense Innovation Board, DIB)所提出之「人工智慧國防運用倫理準則(AI Principles: Recommendations on the Ethical Use of Artificial Intelligence by the Department of Defense)」,以衡平倫理與人工智慧於國防帶來之增益。

  美國國防創新委員會為美國聯邦政府下之獨立委員會,設置目的在於依美國新創科技,提供意見予美國國防部,與美國國防部並無隸屬關係。有鑑於人工智慧之運用範疇日益增廣,美國國防創新委員會遂提出旨揭「人工智慧國防運用倫理準則」,以因應人工智慧於國防之應用所產生之問題。

  倫理準則適用於「戰爭或非戰爭用途之人工智慧之設計以及應用」,對於「人工智慧」之定義,倫理準認為人工智慧並無精確之範疇,只要「對於資訊有所處理並旨在達到所賦予任務之資訊系統」,皆為本準則下之人工智慧。倫理準則指出,「人工智慧」與美國國防部3000.09指令下之「自動化武器系統(Autonomous Weapon System)」之定義不同,但有可能重疊,而所謂「自動化武器系統」為「一經人類選擇啟動,即可在無人類監督之情形下,自動針對目標進行鎖定或進行攻擊之自動化武器系統」。

  美國國防創新委員會表示,該準則旨在切合美國既有憲法、法律、國際公約之傳統標準下,融入現代化對於人工智慧之要求,如國際公約中之戰爭法(Law of War)即為本準則之傳統標準之一,舉例而言,如人工智慧被裝置於武器中,其設計及應用應符合最小傷亡原則、避免傷及無辜原則等。

  除此之外,準則亦包含以下現代化對於人工智慧之要求:(1)人類對於人工智慧系統之設計、應用以及使用應善盡判斷以及注意義務,且人類應該對於人工智慧系統因瑕疵所帶來之傷害負擔最終責任;(2)對於目標之選擇或分類,應維持公平性,且不得有歧視性;(3)對於人工智慧之設計、應用以及使用,應有明確之工程標準以及資料保存程序,此一工程標準以及資料保存程序應為一般具有專業知識之工程人員可據以理解、分析、追蹤問題所在並加以改善;(4)「戰爭或非戰爭用途之人工智慧」應有明確之應用領域,且完善之檢測、維修,應適用於該人工智慧之全部生命週期。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 美國國防部「人工智慧國防運用倫理準則」 , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=5&d=8450 (最後瀏覽日:2025/07/01)
引註此篇文章
你可能還會想看
德國法院判決Google沒有進行事先審查網站內容之義務

  德國最高法院在2018年2月27日判決,Google在搜尋結果連結顯示之前,並無須確認該網站是否存在毀謗性言論,亦即,Google沒有義務事先審查搜尋結果中連結的內容。   此案件的背景是由兩個受到網路言論攻擊的人所提出,其主張為防止其他網路使用者攻擊他們言論的網站出現在Google搜尋結果的連結上,因此希望Google其中的一個部門—Alphabet公司,設置搜尋過濾器,就用戶曾經在網站上發表過不良評論以及損害賠償的相關資訊不會在未來的搜尋結果出現。   本案涉及關於「被遺忘權」(“Right To Be Forgotten”)的討論,所謂被遺忘權是由2014年5月,歐盟法院(ECJ)所作成之裁定,即人們可以要求Google和微軟Bing(MSFT.O)等搜尋引擎於搜尋人名出現的網頁結果中,刪除不適當或不相關的訊息。   本案中,對於Google沒有對搜尋結果進行過濾,Google是否因此有侵害被遺忘權之爭議,德國最高法院表示,搜尋引擎經營者僅須於收到明確且具識別性侵犯個人權利的通知時,採取相關行動即可,並毋須事先檢查該網站之內容是否合法。蓋立法者及社會皆普遍認為,若將搜尋引擎審查網站的內容定為其一般性義務,則其商業模式的本質將備受嚴重質疑,且又由於數據具有管理上的困難性,若無此類搜尋引擎的幫助,人們不可能在網路上獲得有實質有意義的使用,因此搜尋引擎不須將此列為其義務。

日本特許法有關職務發明報酬規定之新近發展趨勢

  企業或機構對於所屬研發人員所為的 職務發明 , 應該給予多少的報償才算「合理」,近年來成為日本專利制度的爭議話題之一,其中 Olympus Optical Co., Ltd. v. Shumpei Tanaka 、 Yonezawa v. Hitachi Co. Ltd. 、 Nakamura v. Nichia Chemical Co Ltd 幾件訴訟案件更受到高度矚目,引發各界對於日本特許法(即專利法)中第 35 條第 3 、 4 項相關規定之檢討與議論,進而促使日本國會於 2004 年 5 月 28 日 通過特許法修正案,並自 2005 年 4 月 1 日 正式生效。   修正後之日本特許法有關受雇人發明制度部分,修正了第 35 條第 3 項及第 4 項並新增第 5 項。第 35 條第 3 項規定,受雇人依據契約、工作規則或其他約定,同意授予雇用人關於受雇人所為發明之專利申請權、專利權或設定專用實施權時,受雇人對於雇用人有收取合理報酬之權。第 35 條第 4 項規定,依據前項所定之契約、工作規則與其他約定,訂有報酬之約定時,在該報酬之決定標準係經由受雇人與雇用人協議為之,該報酬標準係經公開,且受雇人對於計算報酬金額所表達之意見,亦被充分聽取的情形下,依據該約定所為之報酬金給付應被認為是合理的。又同條第 5 項之規定,若企業內部之契約、工作規則與其他約定,並未規定報酬金額,或雖有規定,但該規定之報酬金額被認為是不合理的,則第 3 項所規定之合理報酬金額,應權衡雇用人基於該發明所獲得之利益、所承受之負擔及對該發明所做之貢獻,與受雇人在相關發明中所獲得之利益及其他相關因素加以認定之。   上述修正規定最大的特色在於 :(一)尊重自主協議 ; (二)報酬計算要件更加具體化 ; (三)鼓勵裁判外紛爭解決手段 。新修正之受雇人制度會帶來什麼樣的影響,目前各界仍在觀察;不過可確定的是,相較於舊法,新法至少在計算合理報酬上,要求雇用人須踐行更多的程序及其他要件,而這程序或要件規定將可減少法官在舊法時計算合理報酬金額的沈重負擔,與高度不確定所帶來的風險,並且亦可減少受雇人發明訴訟的總數量。 以日本電子大廠 Toshiba 新近在 7 月底與其離職員工 Fujio Masuoka 就閃光記憶晶片技術( flash memory chip technology )所達成之職務發明報酬和解協議為例, Toshiba 在 7 月 27 日 發布的新聞稿中,即特別感謝東京地方法院對公司有關員工職務發明之報酬政策及看法的尊重。

日本修正「請求揭露匿名網路霸凌者個人資料」之程序

  網際社群服務的普及,如Face Book、Instagram、Twitter或網路論壇,將人與人之間的社群連結從實體拓展到虛擬,社群網路的蓬勃發展充分展現言論自由,人人皆以匿名方式藏身於社群網路的保護傘下盡情抒發己見,但相對也產生層出不窮的網路霸凌事件。   日本於修正《關於特定電子通訊服務業者損害賠償責任限制及使用者資訊揭示法》(特定電気通信役務提供者の損害賠償責任の制限及び発信者情報の開示に関する法律)前,遭受匿名網路霸凌的被害人若想對加害人提起損害賠償訴訟,須同時對社群網路服務業者及網路服務供應業者聲請禁止刪除資料假處分,被害人承擔巨大的程序成本,卻仍須承擔訴訟程序中,社群網路供應商因系統保存時效屆期而自動刪除加害人IP位置資料之風險。   為了遏止頻繁的網路霸凌事件,日本國會已於2021年4月21日表決通過修正《關於特定電子通訊服務業者損害賠償責任限制及使用者資訊揭示法》,將「請求揭露匿名網路霸凌者個人資料」由原本的假處分及通常訴訟程序修正為非訟程序,被害人僅須向法院提出聲請狀,如法院判斷該聲請可特定網路服務供應業者,被害人即可請求社群網路服務業者及網路服務供應業者提供匿名誹謗者(即加害人)的姓名、地址及網路登錄紀錄。另外,為避免IP位置資訊被刪除的風險,法院可於非訟程序進行中,先命社群網路服務業者禁止刪除該IP位置資訊,大幅推進被害人程序利益之保障。

日本經產省公布AI、資料利用契約指引

  伴隨IoT和AI等技術發展,業者間被期待能合作透過資料創造新的附加價值及解決社會問題,惟在缺乏相關契約實務經驗的狀況下,如何締結契約成為應首要處理的課題。   針對上述狀況,日本經濟產業省於2017年5月公布「資料利用權限契約指引1.0版」(データの利用権限に関する契約ガイドラインVer1.0),隨後又設置AI、資料契約指引檢討會(AI・データ契約ガイドライン検討会),展開後續修正檢討,在追加整理資料利用契約類型、AI開發利用之權利關係及責任關係等內容後,公布「AI、資料利用契約指引草案」(AI・データの利用に関する契約ガイドライン(案)),於2018年4月27日至5月26日間公開募集意見,並於2018年6月15日正式公布「AI、資料利用契約指引」(「AI・データの利用に関する契約ガイドライン)。   「AI、資料利用契約指引」分為資料篇與AI篇。資料篇整理資料契約類型,將資料契約分為「資料提供型」、「資料創造型」和「資料共用型(平台型)」,說明個別契約架構及主要的法律問題,並提示契約條項及訂定各條項時應考慮的要點,希望能達成促進資料有效運用之目的。   AI篇說明AI技術特性和基本概念,將AI開發契約依照開發流程分為(1)評估(assessment)階段;(2)概念驗證(Proof of Concept, PoC)階段;(3)開發階段;(4)進階學習階段,並針對各階段契約方式和締結契約時應考慮的要點進行說明,希望達成促進AI開發利用之目的。

TOP