近來虛擬貨幣已成為國際洗錢犯罪工具,為有效防制洗錢及打擊資助恐怖主義行為,芬蘭財政部(Ministry of Finance)宣布通過虛擬貨幣供應商法(The Act on virtual currency providers),於2019年5月1日生效,立法目的係為了將虛擬貨幣供應商納入洗錢防制監管範圍,並由芬蘭金融監管局(Financial Supervisory Authority, FIN-FSA)擔任虛擬貨幣供應商之註冊機構及監管機構。
根據該法案,虛擬貨幣交易所、託管錢包供應商及虛擬貨幣發行者皆須向芬蘭金融監管局進行註冊,以確保遵守相關法規要求,包括:(1)供應商應具可靠性;(2)保存和保護客戶資金;(3)須將客戶資金與自有資金隔離;(4)服務行銷規則;(5)遵守防制洗錢與打擊資助恐怖主義(AML / CFT)規定。虛擬貨幣供應商須符合法規要求才能在芬蘭營運,若未符合法規,將被禁止其業務活動,並依規定科以罰金。
另外,該法案之基本框架,是以2018年5月歐盟宣布通過之「第五號洗錢防制指令」(the Fifth Anti-Money Laundering Directive)為基礎,該指令要求所有歐盟成員國必須於2020年1月10日前,將虛擬貨幣相關服務納入國內AML / CFT監管框架中,以降低洗錢和恐怖主義融資風險。然而,芬蘭金融監管局表示,虛擬貨幣交易風險高,儘管制訂新法案,投資者保護問題仍無法完全解決,呼籲投資者仍須注意虛擬貨幣相關服務所涉及之風險,應謹慎為之。
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。
歐盟執委會公布《可信賴的AI政策及投資建議》歐盟執委會於2018年6月成立人工智慧高級專家組(The High-Level Expert Group on Artificial Intelligence, AI HLEG),主要負責兩項工作:(1)人工智慧倫理準則;(2)人工智慧政策與投資建議。並於2019年4月8日提出《可信賴的人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI),2019年6月公布之《可信賴的AI政策及投資建議》(Policy and Investment Recommendations for Trustworthy Artificial Intelligence)則是人工智慧高級專家組所交付之第二項具體成果。 該報告主要分為兩大部分,首先第一部分是要透過可信賴的人工智慧建立對歐洲之正面影響,內容提及人工智慧應保護人類和社會,並促進歐洲公司各部門利用人工智慧及技術移轉,而公部門則扮演人工智慧增長及創新之催化劑,以確保歐洲具有世界一流之研究能力;第二部分則是影響歐洲各成員國建立可信賴之人工智慧,內容則提及將發展人工智慧相關基礎設施、教育措施、政策規範及資金投資,同時合法、有道德的使用各項數據。 在本報告中關於法規面的建議則是進一步制定政策和監管框架,確保人工智慧在尊重人權、民主及創新下發展,因此將建立人工智慧政策制定者、開發者及用戶間的對話機制,若是遇到將對社會或是人類產生重大影響之敏感性人工智慧系統,除透過歐洲人工智慧聯盟(The European AI Alliance)進行對話之外,也需要在尊重各成員國之語言及文化多樣性下展開協調機制。另外,報告中也特別提到如果政府以「保護社會」為由建立一個普遍的人工智慧監督系統是非常危險的作法,政府應該承諾不對個人進行大規模監視,並在遵守法律及基本權利下進行人工智慧系統之發展。
美國商務部工業暨安全局公布「確保聯網車輛資通訊技術及服務供應鏈安全」法規預告.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商務部工業暨安全局(Bureau of Industry and Security, BIS)於2024年9月23日公布「確保聯網車輛資通訊技術及服務供應鏈安全」(Securing the Information and Communications Technology and Services Supply Chain: Connected Vehicles)法規預告(Notice of Proposed Rulemaking, NPRM),旨在透過進口管制措施,保護美國聯網車供應鏈及使用安全,避免國家受到境外敵對勢力的威脅。 相較於BIS於2024年3月1日公布的法規制定預告(Advanced Notice of Proposed Rulemaking, ANPRM),NPRM明確指出受進口管制的國家為中國及俄國,並將聯網車輛資通訊技術及服務之定義,限縮於車載資通訊系統、自動駕駛系統及衛星或蜂巢式通訊系統,排除資訊洩漏風險較小的車載操作系統、駕駛輔助系統及電池管理系統。NPRM定義三種禁止交易型態:(1)禁止進口商將任何由中國或俄國擁有、控制或指揮的組織(下稱「中俄組織」)設計、開發、生產或供應(下稱「提供」)的車輛互聯系統(vehicle connectivity system, VCS)硬體進口至美國;(2)禁止聯網車製造商於美國進口或銷售含有中俄組織所提供的軟體之聯網整車;(3)禁止受中俄擁有、控制或指揮的製造商於美國銷售此類整車。 NPRM亦提出兩種例外授權的制度:在特定條件下,例如年產量少於1000輛車、每年行駛公共道路少於30天等,廠商無須事前通知BIS,即可進行交易,然而須保存相關合規證明文件;不符前述一般授權資格者,可申請特殊授權,根據國安風險進行個案審查。其審查重點包含外國干預、資料洩漏、遠端控制潛力等風險。此外,為提升供應鏈透明度並檢查合規性,BIS預計要求VCS硬體進口商及聯網車製造商,每年針對涉及外國利益的交易,提交符合性聲明,並附軟硬體物料清單(Bill of Materials, BOM)證明。BIS針對此規範是否有效且必要進行意見徵詢,值得我國持續關注。