世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
瑞士洛桑管理學院(International Institute for Management Development, IMD)於2019年11月18日發布2019 年世界人才評比報告(The IMD World Talent Ranking 2019 results)。IMD作為全球最著名商學院之一,其所屬之世界競爭力研究中心(IMD World Competitiveness Center, WCC)透過收集數據以及分析相關政策結果,推進對世界競爭力的認知,包含每年出版年度世界競爭力排名(World Competitiveness Rankings)、世界數位競爭力報告(World Digital Competitiveness Ranking),和世界人才評比報告。 2019 年世界人才評比報告以「人才投資與發展」、「人才吸引力」和「人才整備度」(Readiness)為三大評比指標,評比63個經濟體。「人才投資與發展」衡量國家提供給人力之資源,「人才吸引力」評估吸引本地和外國人才的程度,「人才整備度」則評估人才技術及競爭品質。三大指標下再區分有32個細項,包含公共教育支出、師生比、在職訓練、女性勞動力、學徒制度、員工獎酬及紅利、個人所得稅率、職場環境健康等。 2019年之人才評比結果,前5名均為歐洲國家,依序為瑞士、丹麥、瑞典、奧地利及盧森堡。我國在全球排名20,亞洲排名第3,僅次新加坡(10)與香港(15),勝過排名分別為35和33的日韓兩國,為歷年來排名最佳。細項中,我國較為優勢的部分包括國際學生能力評鑑(PISA)排名第2、理工科畢業生比例全球第3、衛生健康環境全球第6等。
美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。 此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。 時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。
德國聯邦內政部提出「資訊科技安全法」(草案),保障關鍵基礎設施及資訊安全德國聯邦內政部繼與德國聯邦經濟暨能源部與交通暨數位基礎設施部共同擬定之「數位議程2014 - 2017」(Digitale Agenda 2014 – 2017)政策裏,於本年8月19日提出資訊科技安全法(草案)(IT-Sicherheitsgesetz)。該草案的提出目的為保障德國公民與企業使用的資訊系統安全,特別是在全國數位化進程中,攸關國家發展的關鍵基礎設施。德國內政部長de Maizière在新聞發表會上,宣稱要讓德國成為全球資訊科技系統及數位基礎設施安全的先驅與各國的模範。除外,亦欲藉此強化德國資訊科技安全企業的競爭力,提升外銷實力。 該草案的主要對象係關鍵基礎設施營運者(Kritische Infrastrukturbetreiber),例如在能源、資訊科技、電信、運輸和交通、醫療、水利、食品、金融與保險等領域的企業。「關鍵基礎設施」的定義並未涵蓋德國聯邦政府部門之間使用的數據通信系統。不過,究竟係在這些基礎設施領域的哪些企業該受到資訊科技法的約束,德國內政部將陸續與各相關部會研討後再以行政法規的方式明確表列出來。 關鍵基礎設施企業必須採取適當的保護措施以保障關鍵基礎設施的正常運行。所採取的保護措施可符合同業或同業公會裡所認可的最新資訊安全標準,且得符合一定的付出成本比例。不過衡量標準,最後還是得由德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)〉做認定。上述之企業需兩年內完成安全防護措施的設置。為防止電信系統非法入侵,該草案也修增德國電信法(Telekommunikationsgesetz)為施予電信業者更高的資訊安全防護標準。針對網際網路服務提供者(Internet Service Providers, ISP)也特別施加設置防範駭客攻擊的尖端防護措施義務。 關鍵基礎設施業者的資訊安全系統均須透過德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)每兩年定期審核,若沒通過則會被要求依德國聯邦資訊安全局的標準去處裡該安全漏洞。 若是上述業者的資訊安全系統有受損,並且可導致關鍵基礎設施的故障或損毀,該企業需通報德國聯邦資訊安全局,且該記錄可匿名化。但是,若是因駭客攻擊直接導致關鍵基礎設施的故障或損毀,該企業則需立即通報德國聯邦資訊安全局,不可匿名。
歐盟智慧財產局公布2020年智財侵權狀況報告歐盟智慧財產局(European Union Intellectual Property Office)於今(2020)年第三季公布最新智財侵權狀況報告,研究報告為其智庫「歐盟智慧財產權侵權觀察平台(The European Union Observatory on Infringements of Intellectual Property Rights)」所執行,並結合經濟合作暨發展組織(Organization for Economic Cooperation and Development)之數據資料,每年以不同主題呈現當年世界智財侵權狀況。今年以「智財權為何重要、智財侵權與打擊仿冒之戰爭」為主題,重點如下: 智財密集產業對歐盟經濟貢獻占整體GDP的45%、就業人數占歐盟就業人口的29%、出口貨物量占96%。 企業對智財的重視比例增高,重視智財的企業雇員平均收入較不重視智財權者高出32%;運用智財於營運策略的中小企業成長潛力高於無智財權者,如依權利運用類型區分,其成長率分別是10%(商標)、16%(商標結合專利)、27%(商標與設計權),以及33%(三種權利組合)。 全球仿冒品占其貿易總量約3.3%,市值高達1,210億歐元。 除日常藥品,抗生素、癌症或心臟疾病藥物仿冒情形均趨於嚴重;2019年爆發新冠肺炎後,偽造商更是將仿冒移轉至檢測試劑與個人防護用品。 尤其進入AI與5G時代後,智財密集產業對世界經濟貢獻度可望逐年上升,但侵權狀況恐怕亦同,咎因於該產業之興盛與背後龐大的潛在利益。因此持續推動建立企業的智財意識與防護能力,有其必要性,以助於提升產業發展潛力與整體營運獲利。