日本ZEON股份有限公司宣布加入「對抗COVID-19智財宣言」

  日本ZEON公司於2020年10月19日發表加入「以智慧財產協助控制新冠病毒傳染對策宣言(對抗COVID-19智財宣言,OPEN COVID-19 DECLARATION)」,以達到共同抗疫之目的。

  該宣言是由ジェノコンシェルジュ京都株式会社(GENO CONCIERGE KYOTO)所發起,期望透過加入該宣言的企業,於以終結新冠肺炎蔓延為目的所為之產品開發、製造及販賣,宣示不行使企業所擁有相關發明、新型及設計專利權和著作權等權利。如此一來,將可建構友善的防疫產品開發及製造環境,讓開發者或製造商免去來自權利人的侵權調查或繁複的授權流程。 目前已有包括Canon、Nikon、SONY、CASIO、Panasonic、大金空調、豐田、三菱、速霸路、馬自達等101間知名企業加入,並擁有高達927,897件的專利數量。

  經產省近畿經濟產業局也與該宣言辦公室合作,提出對抗新冠肺炎計畫,計畫主軸在於以下三點:

  1. 從加入宣言的所有專利中,挑選易於活用的技術並提出施行的可行方案。
  2. 協助中小及新創企業與加入宣言的企業對談,支援權利交涉。
  3. 協助擬定授權契約及業務展開等必要策略。

  我國在經濟部智慧財產局全球專利檢索系統(GPSS)全新提供「防疫專區」服務,以目前防疫需求較大的產業如「口罩」、「防護衣」、「檢測」、「疫苗」、「藥品」等14項作為分類主軸,提供「一鍵查詢全球防疫技術相關專利」及「防疫技術相關專利新訊訂閱」功能,協助產業界快速掌握全球防疫技術相關專利。

相關連結
你可能會想參加
※ 日本ZEON股份有限公司宣布加入「對抗COVID-19智財宣言」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?tp=1&d=8571&no=64 (最後瀏覽日:2024/12/09)
引註此篇文章
你可能還會想看
何謂「專利審查高速公路」?

  「專利審查高速公路(Patent Prosecution Highway, PPH)」係指專利審查機關加速專利審查之程序。藉著各國專利局間合約之簽署,當某專利申請在第1間專利局取得至少1請求項(claim)之核准後,申請人得請求加速第2間專利局就該已經核准之請求項之審查程序。申請人得縮短取得專利之期間,參與之專利局亦得藉著利用第1間審查之專利局已有資料,降低審查工作之負荷。但此並不代表於第1間專利局獲准之專利之發明於第2間專利局亦會當然獲准。   台灣目前已與美國、日本、韓國及西班牙簽署備忘錄進行專利審查高速公路之計畫,日後專利申請人得利用此機制,縮短取得專利之時程,專利局的審查速度亦會加快。根據智財局之統計,至2016年6月底,平均首次OA(office action)期間(自PPH文件齊備至首次OA平均期間)為57.6天,平均審結期間(自PPH文件齊備至審結平均期間)則為136.6天。

歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。   《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。   歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

新加坡交易所(SGX)正式推出SPAC上市框架

  由新加坡政府基金淡馬錫(Temasek)支持的「特殊目的收購公司」(Special Purpose Acquisition Company, SPAC)「Vertex Technology Acquisition Corp.」已於2022年1月20日在新交所掛牌上市,為首家在新加坡上市之SPAC。後續還有由國際發起人發起的「 Pegasus Asia」已於2022年1月21日上市,以及由新加坡基金 Novo Tellus Capital Partners 設立之「Novo Tellus Alpha Acquisition」於2022年1月27日上市。   由於美國2020年、2021年已有許多欲上市之公司採用SPAC制度上市,同時在美國紐約證券交易所(NYSE)及那斯達克(Nasdaq)均獲得巨大的成功,因此各國交易所開始摩拳擦掌,紛紛著手修正上市規則允許SPAC制度以吸引優良企業。   新加坡交易所(SGX)最初於2021年3月底時發布SPAC上市框架諮詢文件,並於同年9月2日公布該諮詢文件之回覆意見及結論,並同時修正主板上市規則,允許SPAC於同年9月3日在新加坡主板上市。   SGX說明超過80名受訪者(包含金融機構、投資銀行、私募股權和風險投資基金、企業、一般投資人、律師、會計師和其他利益相關者)回覆SPAC上市框架諮詢文件,該回覆率為近年來之最高,可見SPAC制度之熱潮。   新加坡SPAC上市框架規定SPAC公司須符合以下條件: SPAC公司須至少擁有1.5億新加坡幣市值; SPAC公司須於IPO後24個月內完成收購未上市公司,僅於符合特定條件下最多再延長12個月; SPAC公司收購未上市公司時,需經過50%以上獨立董事同意及50%以上獨立股東同意; 所有獨立股東均享有異議股東股份收買請求權; 贊助人需至少認購IPO發行股份/認股權證總額之2.5%-3.5%(具體比例將依據SPAC公司市值判斷) 於IPO後至SPAC公司收購未上市公司前,禁止贊助人讓售所持有之股份   後續新加坡SPAC發展及併購值得繼續觀察。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP