英國通訊管理局決定擴張防止「不正當銷售」(mis-selling)的規定

  鑑於頻寬市場以及電信市場的競爭愈趨炙熱,不肖資通訊業者對於弱勢消費者,透過詐騙或其他不適當銷售手法而獲利的案例也層出不窮。爰此,英國通訊管理局(Office of Communication/ Ofcom)在2007年2月8日,決定擴張防止固網電信業者對消費者「不正當銷售」(mis-selling)的規範內容(General Condition)。

 

  「不正當銷售」指的是電信公司或其雇員,利用不受歡迎或者非法的銷售產品技巧所從事的相關市場活動。其中最嚴重的銷售方式,又以「砰一聲」(slamming)的銷售行為,最令人詬病。因為該銷售行為是在未經消費者明示同意、或者未使其獲得足夠知識與資訊下,逕自將提供的服務轉換到另一家公司。例如:轉換服務提供者,但並未通知你;通知轉換服務提供者,但未經你同意;所簽約的服務與提供的服務不盡相同;銷售人利用使你倍感壓力的方式來銷售服務等等,均屬誤賣行為。

 

  此次的規則擴張,在規範對象上也會納入那些使用用戶迴路的服務提供者。Ofcom認為在日益激勵的市場競爭下,這些擴張規則有助於消費者權益,並能保護他們免受不適當的銷售活動干擾,更可確保消費者追求更好消費標的市場信心。

相關連結
※ 英國通訊管理局決定擴張防止「不正當銷售」(mis-selling)的規定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1115&no=55&tp=1 (最後瀏覽日:2026/01/02)
引註此篇文章
你可能還會想看
日本用老鼠複製人類腎臟

  日本慈惠醫科大學研究人員用人類幹細胞,植入實驗鼠胚胎中,培育出具有人基因的複製腎,能過濾尿液。   研究人員先把生成腎臟的神經營養因子基因植入骨髓含有的幹細胞,然後在實驗鼠胚胎未生成腎臟前,將幹細胞注入胚胎中可生成腎臟的部位。隨後,研究人員摘出胚胎中相當於腎臟的部分。經過六天的培養,這部分組織長出了讓腎臟發揮功能的腎單位及其周圍的腎間質。基因檢查結果確認該腎臟是由人的骨髓幹細胞生成。研究人員再將這一"複製腎"移植到其他實驗鼠的腹部,約二周時間後,"複製腎"生長到一百五十毫克。   利用骨髓幹細胞進行再生醫療,生成皮膚和軟骨等已經進入實用階段,但利用動物再生人類器官還沒有先例。參加研究的橫尾隆認為,從理論上說,用這種方法生成的器官不會發生排異反應。除腎臟外,這種方法還可用來生成胰腺和肝臟。

英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會

英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

中國大陸國家食品藥品監督總局為落實食品安全法所涉保健食品管理項目,修訂《保健食品備案工作細則》

  中國大陸食品及保健食品法制主要規定於《中華人民共和國食品安全法》、《食品生產許可管理辦法》、《保健食品註冊與配案管理辦法》及《食品生產許可審查通則》。惟,近年來,中國大陸國家食品藥品監督總局因應日前食品安全法修正 ,為進一步落實其所涉之保健食品備查及管理項目之執行,補強保健食品之法制缺口,即依據《保健食品註冊與備案管理辦法》訂定《保健食品備案工作細則》,另於今年度(2017)年2月7日公布該細則內容,進行為期一個月之公眾意見徵集。《保健食品備案工作細則》共分為八個章節,依序規範保健食品所涉之備查項目、相關適用資格及應備齊之文件,例如:中國大陸製造及生產之保健食品之特殊備查要求、外國進口之保健食品備查要件…相關變更及效力等多項內容。茲就重要內容說明如下: 一、適用範圍及基本原則 凡用於凡於中國大陸境內生產製造或欲進口之保健食品皆適用之。並應當遵循規範統一、公平公正之備查原則保健食品備查。 二、保健食品備查概念 係指保健食品生產企業應依據辦法及細則規定之法定程序、要件,將可茲證明該項產品之安全性、功能性等相關資料及應備文件提交權責當為進行存檔備查之過程。 三、食品藥品監督管理部門之權責 中國大陸國家食品藥品監督總局為保健食品註冊及備查之主管單位、應對各省、自治區、直轄市食品藥品監督管理部門之保健食品註冊及備查相關項目具有指導監督之責。

TOP