在今(2007)年1月底召開的生物多樣性公約技術專家小組會議(Technical Expert Group of the Convention on Biological Diversity),秘魯提出透過核發一種類似來源地證明的“基因護照”(genetic passports; passport for genetic resources),簡化基因資源的跨境交換(cross-border exchanges)手續,以便協助更多國家得以靈活利用各國基因資訊。由於透過基因護照的核發,一國對其基因資源的掌控得以超出其國境之外,因此秘魯此項提案受到許多專家背書支持。
根據1992簽署的生物安全議定書(Convention on Biological Diversity, CBD),各國對源自於其國境內之基因資源擁有主權。基因資源為生技研究所仰賴的重要研究資源,基因資源的豐富與否取決於生物多樣性。由於具備豐富生物多樣性的國家多集中在開發中的「南方」國家,長久以來,這些國家境內的基因資源被來自於已開發國家的機構以「研究」、「學術交流」等各種名目帶出,卻無法享受其研究成果,導致目前對基因資源已立法管理的國家(多為開發中國家),法令內容主要偏向阻擋不法利用,而非鼓勵多元利用,無形中使國際間基因資源之使用逐漸形成壁壘。
秘魯最近所提出的提案即是為了解決上述問題,根據秘魯的提案,每一種資源的“基因護照”將發給CBD會員國負責主管基因資源管理事務的政府主管機關。“基因護照”將涵蓋所有的基因資源,包括動物、植物及微生物;護照中將會註明此等物質之來源地、特性及負責單位。透過基因護照的核發,國與國之間得以建構基因資源流動及運送的國際共識。由於此項提案受到生物多樣性公約技術專家小組會議二十五國代表的全體同意,CBD秘書處希望該提案能在今(民國96)年10月將在加拿大召開的第九屆大會中通過。
本文為「經濟部產業技術司科技專案成果」
全球最大搜索引擎 Google公司於去年12月中宣布,已與美國紐約公共圖書館以及哈佛大學、史丹福大學、密西根大學、牛津大學合作,將數百萬冊藏書數位化讓網友免費瀏覽。此一計畫預計花十年時間建構,在2015年啟動,經費約估1億5000萬到2億美元之間 (The Google Print Program)。雖然此一構想極具創意,但是由於將館藏圖書數位化牽涉著作權爭議,因此由125家非營利學術出版機構組成的美國大學出版協會(AAUP)已針對若干疑點去函,希望Google能釐清著作權法上之疑慮,以利整體計劃之推動。 AAUP所持最重要依據係美國著作權法第107條有關合理使用之規定。AAUP質疑,以Google如此大規模,就圖書內容性質不加以區分,全面性的圖書數位化工程,恐怕無法符合著作權法所訂出的合理使用標準。蓋著作權法有關是否符合合理使用之界定標準,是以事實情況及個案之判別方式為主,故無法想像Google如何在未進行個別之判斷前,便能夠概括性的依此而主張其享有合法權利。事實上,Google之主張與法院實務界之認知存在極大落差。 此外, Google的數位圖書館計畫在許多細部執行事項上,仍存有許多疑點,導致原先欲加入的AAUP會員,無法確保圖書內容完成數位化後,對於以銷售書籍及授權為主要營收來源之出版社,恐會產生造成市場排擠效果之憂慮。 藉由數位技術雖然可以挑戰人類夢想的極限,但過程中涉及的法律層面問題,卻相當程度羈絆了夢想前進的速度。 Google的數位圖書館計劃再次印證了新興技術與現行法規不協調的窘況。就現有事實資料以觀,Google若未能與學術出版商妥善安排著作權引發之爭議,此一計畫未來是否能順利執行,恐怕存有極大疑問。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟NIS 2指令生效,為歐盟建構更安全與穩固的數位環境歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union, NIS 2 Directive)於2023年1月16日正式生效,其於《網路與資訊系統安全指令》(Directive on Security of Network and Information Systems, NIS Directive)之基礎上,對監管範圍、成員國協調合作,以及資安風險管理措施面向進行補充。 (1)監管範圍: NIS 2納入公共電子通訊網路或服務供應、特定關鍵產品(如藥品與醫療器材)製造、社交網路平台與資料中心相關數位服務、太空及公共行政等類型,並以企業規模進行區分,所有中大型企業皆須遵守NIS 2之規定,而個別具高度安全風險之小型企業是否需要遵守,則可由成員國自行規範。 (2)成員國協調合作: NIS 2簡化資安事件報告流程,對報告程序、內容與期程進行更精確的規定,以提升成員國間資訊共享的有效性;建立歐洲網路危機聯絡組織網路(European cyber crisis liaison organisation network, EU-CyCLONe),以支持對大規模資安事件與危機的協調管理;為弱點建立資料庫及揭露之基本框架;並引入更嚴格的監督措施與執法要求,以使成員國間之裁罰制度能具有一致性。 (3)資安風險管理措施: NIS 2具有更為詳盡且具體之資安風險管理措施,包含資安事件回報與危機管理、弱點處理與揭露、評估措施有效性的政策與程序、密碼的有效使用等,並要求各公司解決供應鏈中的資安風險。
日本通過國家戰略特別區域法修正案日本國會在2020年5月27日通過《國家戰略特別區域法》修正案(国家戦略特別区域法の一部を改正する法律),亦即「超級城市法」(スーパーシティ法)。所謂超級城市,係指符合(1)在交通、物流、支付、行政、醫療、照護、教育、能源/水、環境/垃圾、防災/安全等10大領域中,至少滿足其中5個領域日常生活需求;(2)加速實現未來社會生活;(3)透過民眾參與,建立從民眾觀點出發之理想社會等三大條件之未來都市。 超級城市法修正重點有二,首先為實現超級城市構想之相關制度整備,包括(1)賦予蒐集、整理、提供各種類型服務相關資料之資料聯合平台(データ連携基盤)業者法律上地位;(2)因相關制度涉及不同法規及主管機關,故超級城市法內特別設計可併同檢討跨領域法規修正之特別程序;(3)其他規定︰如明定各中央政府機關應提供具體協助、應檢討制定Open API規範,以及本法施行後3年應檢討施行狀況等。其次,本次修法新增地區限定型之監理沙盒制度(地域限定型規制のサンドボックス制度),針對自駕車、無人機等科技創新實驗,透過強化事後監督體制,事前放寬道路運輸車輛法、道路交通法、航空法、電信法之限制,以加速實驗進行。