在今(2007)年1月底召開的生物多樣性公約技術專家小組會議(Technical Expert Group of the Convention on Biological Diversity),秘魯提出透過核發一種類似來源地證明的“基因護照”(genetic passports; passport for genetic resources),簡化基因資源的跨境交換(cross-border exchanges)手續,以便協助更多國家得以靈活利用各國基因資訊。由於透過基因護照的核發,一國對其基因資源的掌控得以超出其國境之外,因此秘魯此項提案受到許多專家背書支持。
根據1992簽署的生物安全議定書(Convention on Biological Diversity, CBD),各國對源自於其國境內之基因資源擁有主權。基因資源為生技研究所仰賴的重要研究資源,基因資源的豐富與否取決於生物多樣性。由於具備豐富生物多樣性的國家多集中在開發中的「南方」國家,長久以來,這些國家境內的基因資源被來自於已開發國家的機構以「研究」、「學術交流」等各種名目帶出,卻無法享受其研究成果,導致目前對基因資源已立法管理的國家(多為開發中國家),法令內容主要偏向阻擋不法利用,而非鼓勵多元利用,無形中使國際間基因資源之使用逐漸形成壁壘。
秘魯最近所提出的提案即是為了解決上述問題,根據秘魯的提案,每一種資源的“基因護照”將發給CBD會員國負責主管基因資源管理事務的政府主管機關。“基因護照”將涵蓋所有的基因資源,包括動物、植物及微生物;護照中將會註明此等物質之來源地、特性及負責單位。透過基因護照的核發,國與國之間得以建構基因資源流動及運送的國際共識。由於此項提案受到生物多樣性公約技術專家小組會議二十五國代表的全體同意,CBD秘書處希望該提案能在今(民國96)年10月將在加拿大召開的第九屆大會中通過。
本文為「經濟部產業技術司科技專案成果」
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本自動駕駛戰略本部新近政策規劃日本鑒於為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於2016年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於同年12月9日召開第一次會議。討論的範圍則包括:為實現自動駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。 會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「以非平地休息服務站為據點的自動駕駛服務」等議題速成立工作小組,將對自動駕駛所應用技術進行各類型實證試驗。 其中,在「以非平地休息服務站為據點的自動駕駛服務」方面,已於2017年2月展開補助試驗計畫的募集;預計驗證的項目有分別針對一般(搭載2-10人)以及大型車輛(10人以上),結合GPS、雷達、攝影機等來瞭解障礙物資訊的車輛自動控制技術。 而在「大卡車列隊行走」方面,國土交通省則是在2016年已開始的實證試驗基礎上持續拓展。未來在2019年中後,並規劃將驗證範圍擴展至高速公路上驗證更長距離的自動駕駛。
加拿大聯邦政府預計2018年於全國落實碳排放費用徵收加拿大總理賈斯汀.杜魯道(Justin Trudeau)於2016年10月提出一項改革方案,要求全國各省份或地區於2018年開始,須擇一實施碳稅(Carbon tax)制度或碳交易系統(Cap-and-Trade System):前者,聯邦政府將制定徵收下限,從2018年每噸10元,逐年提高10元,直至2022年每噸50元為止;至於碳交易系統,則須設立嚴格管控規範,以達聯邦政府實施碳稅制度所得減少碳排放量之預期值。同時,杜魯道更進一步表示,費用將交由各省區自行向排放者進行徵收,並可就其所得作自由運用,反之,倘若未確實執行該項政策者,聯邦政府則將強制介入實施。 事實上,綜觀國際間徵收碳稅制度,主要有兩種類型:一類為全國落實碳稅徵收,例如:荷蘭、丹麥、德國或南韓等,其中尚可再細分是否作為一獨立稅目進行徵收,前述荷蘭及丹麥二國,即直接設立碳稅進行徵收,至於德國與南韓,則是將碳排放作為能源稅之計算因子之一作收取;另一類為國內部分地區自行決定收取,如:美國加州地區及原先加拿大不列顛哥倫比亞省與魁北克省等。 至於未來觀察重點,應在於加拿大實施上述碳排放費用徵收政策後,勢必對於民生消費習慣具相當程度影響,諸如:暖氣、民生用電、交通工具燃料、公共運輸、食品、服裝或其他消費服務,預期均有相應之漲幅,再者,各省區之經濟政策及投資環境,亦可能有不小程度之衝擊,此兩處後續發展,均值得作持續性觀察。