英國民眾請願禁止使用DRM

  超過1400位英國民眾共同連署後,於英國政府電子請願網站上,請求英國政府禁止「數位版權管理」(digital rights management, DRM)之使用。該項請願中引用去年英國國會獨立組織-All Party Parliamentary Internet Group(APIG)所發表之調查結果。該項調查結果中指出,為避免如2005年Sony所使用之數位版權管理程式般具有侵入性的科技侵害人民權利,應針對此類科技建立消費者保護機制。

 

  除此之外,該份請願亦主張,數位版權管理使得消費者無法自由在CD或數位下載等不同競爭產品間自由選擇。而在不久之前,蘋果電腦之執行長Steve Jobs亦曾提倡無數位版權管理之合法數位音樂下載,Steve Jobs認為若能提供無數位版權管理之合法數位音樂下載,將可增加不同業者所提供音樂下載服務的相容性,進而促使數位音樂下載市場更為蓬勃發展。

 

  不過對於該項請願,英國政府回應中認為數位版權管理不僅透過科技保護措施扮演著警察的角色,同時亦使得內容提供業者得以各種消費者期望的方式提供數位內容服務。因此,數位版權管理的存在仍有其貢獻,不應加以廢除。當然在使用數位版權管理的同時,亦應注意消費者權益之保護,合理的方式乃是在消費者購買產品前,清楚告知產品所提供之服務內容、消費者購買後可被允許之使用方式和各種使用限制。

相關連結
※ 英國民眾請願禁止使用DRM, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1205&no=55&tp=1 (最後瀏覽日:2025/11/20)
引註此篇文章
你可能還會想看
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

從「氣候變遷行動方案」觀察美國能源科技法制政策發展

數位模擬分身(Digital Twin)

  數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。   於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。

經濟部預告試辦自願性綠色電價計畫(草案)

TOP