美國又傳疑似商業間諜活動

  2007年3月舊金山聯邦法院受理Oracle軟體公司對競爭對手SAP及其關係企業TomorrowNow提出濫用電腦詐欺、商業間諜行為告訴。

 

  Oracle公司表示,自2006年底起便發現公司網站中與PeopleSoft、J.D. Edwards有關的客戶支援與維護部分出現流量暴增的現象。犯罪者冒用客戶的ID進入網站中竊取重要軟體與資料,目前已發現超過一千萬筆的違法下載紀錄,而犯罪者IP位址是來自於SAP德州辦公室所在地。

 

  訴狀中指出,SAP員工涉嫌冒用多名PeopleSoft及J.D. Edwards的客戶帳號,登入並存取Oracle的重要資料與客戶連繫系統。因此,Oracle要求法院對SAP發出禁制令,以阻止其違法行為,另聲請法院下令要求SAP歸還非法竊取之資料與文件。

 

  面對Oracle指控,SAP公司發言人Steve Bauer表示公司目前仍在瞭解與檢視該案件,因此不便就整起事件發表評論,但公司保證將全力回擊Oracle的指控。

相關連結
※ 美國又傳疑似商業間諜活動, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1781&no=55&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
由AOL LLC and PLATFORM-A, INC. v. ADVERTISE.COM, INC. 案看網域名稱與商標名稱爭議

  2009年10月19日,美國線上公司AOL LLC and Platform-A, Inc. (American Online, 簡稱AOL)再次於美國聯邦加州中區地方法院 (US California Central Federal District Court)向一家提供美國線上行銷廣告的公司- ADVERTISE.COM公司,提出商標侵權訴訟。     本案原告- AOL早於2009年8月17日即向美國東維吉尼亞地方法院提出商標侵權訴訟,主張ADVERTISE.COM公司所使用advertise.com之網域名稱,除侵害AOL已註冊的Advertising.com,包含通用文字- advertising.com及設計過A之圖形,及申請中的AD.COM商標權外,也違反了不公平競爭法及維吉尼亞商事法。唯,10月初,東維吉尼亞地方法院法官提出有利於ADVERTISE.COM公司之意見,認為AOL企圖以其所註冊之商標- (A)dvertising.com,來阻止其他競爭公司在網路世界使用任何有關advertise文字的作法,係壟斷網路上所有線上廣告行銷市場;故,AOL被迫於10月將本件訴訟案轉向美國聯邦加州中區地方法院提出。     目前尚無對本案的意見,將待本案之後續發展,才能暸解商標權人所註冊的圖形商標中,若包含經設計的圖案及通用的文字時,是否就取得圖形當中通用文字的專用權,並可向其他競爭者主張,任何使用所註冊的商標的一部分,包含網域名稱中的文字,也是商標侵害的一種型態;如此,可能將導致擴張商標權的保障範圍。

英國發布國家資料戰略(National Data Strategy)

  英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)於2020年9月9日發布「國家資料戰略」(National Data Strategy),作為英國規劃其政府資料流通運用的整體性框架。數位、文化、媒體暨體育部長Oliver Dowden表示,資料為驅動現代社會經濟發展的關鍵。於今年COVID-19的全球疫情流行期間,政府、企業、組織等彼此及時共享重要資訊,除達成了防疫目標,更維繫了各層面的經濟生活。因此,本戰略則規劃活用此段期間獲得的知識與經驗,試圖透過資料的釋出流通與運用,讓英國經濟自COVID-19疫情中復甦,提高生產力與創造新型業態,改善公共服務,並使之成為推動創新的樞紐。   為優化英國資料的運用,本戰略提出了四個核心面向:(1)資料基礎(data foundation):資料應以標準化格式,且符合可發現(findable)、可取用(accessible)、相容性(interoperable)與可再利用(reusable)的條件下記載;(2)資料技能(data skills):應藉由教育體系等培養一般人運用資料的技能;(3)提升資料可取得性(data availability):鼓勵於公共、私人與第三部門加強協調、取用與共享具備適切品質的資料,並為國際間的資料流通提供適當的保護;(4)負責任的資料(responsible):確保各方以合法、安全、公平、道德、可持續、和可課責(accountable)的方式使用資料,並支援創新與研究。   基此,本戰略進一步提示了五個優先任務:(1)釋出資料的整體經濟價值:建立適切的條件,使資料在經濟體系內可取得且具備可取用性,同時保護私人的資料權(data rights)、以及企業的相關智慧財產權;(2)建構具發展性且可信賴的資料機制:協助企業家與新創人士以負責任及安全的方式使用資料,避免產生監管上的不確定性或風險,並藉以推動經濟發展。同時,也期待藉由機制的建立,鼓勵公眾參與資料的數位經濟應用;(3)改變政府運用資料的方式,提升效率及改善公共服務:以COVID-19疫情期間政府對資料積極運用為契機,推動政府間的整體資料有效管理、使用與共享措施,為相關作法建構一致性的標準與最佳實踐方式;(4)建立資料基礎設施的安全性與彈性:資料基礎設施為國家關鍵資產,應避免其遭遇安全或服務中斷的風險,進而導致資料驅動的相關業務或組織服務中斷;(5)推動國際資料流(international flow of data):與國際夥伴合作,確保資料的流通運用不會因各地域的制度不同,而受到不當限制。

日本經濟產業省所屬研究機構提議「日本能源基本計畫修正研析建議」報告

  日本經濟產業省(Minister of Economy, Trade and Industry)所屬「自然資源及能源諮詢委員會(Advisory Committee for Natural Resources and Energy)」於2011年12月提出一份「日本能源基本計畫修正研析建議(Establishment of a New Basic Energy Plan for Japan)」,對於現有日本能源基本計畫,研析討論重要議題,並提出修正建議。   日本能源基本計畫,係因日本政府為因應2020年應達25%減碳目標(相較1990年水準),於2010年所規劃擬訂之推動計畫。而自然資源及能源諮詢委員會則是陸續招開會議研商討論,並提供建議給日本經濟產業作為省調修參考。此份報告指出,此份報告指出,能源基本計畫之推動架構必須重新思考,包括提議能源政策應強調重視「需求端(Demand Side)」,與兼顧「消費者(Consumers)」、「社會公民(Ordinary Citizens)」、「區域社區(Regional Communities)」等方面意見及利益,並建立社會公眾信心(Public’s Trust),以及必須能達到多元化不同電力能源之來源應用,並對於日本國家所需能源組成結構(Desired Energy Mix)進行討論議訂。   並且,對於推動實施,建議能源政策改革應朝向,以改革需求端架構(Reform of the Demand Structure)來達到能源節約社會目標,,以及改革供給端(Reform of the Supply Structure)來達到下一代分散式能源系統目標,並且倡議以創新技術來協助國家能源組成結構轉型,與能源供給端至需求端應備建設(Energy Supply-Demand Structure)之改革工作。   此研究報告於2011年12月提出後,歷經多次修改(最新更新為2012年1月),未來提交給經濟產業省供政策參考後,將產生如何影響內容,將再持續觀察最新進度。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP