日本為了提高產業競爭力,於 2002 年提出智財戰略計畫,並於內閣中設戰略本部,由首相小泉純一郎領導,每年並仔細擬定當年度的智慧財產權推動計畫。在今年剛定案的「二零零六年智慧財產權推動計畫」中,以開發或利用大學的智慧財產及加強與產業界的合作並提出對付仿冒品等的對策為重點。 根據「二零零六年智慧財產權推動計畫」,未來將加強整合大學內部的大學智慧財產本部與民間的技術移轉機關( TLO ),以便集中運用人才、研究成果。計畫也將建立一套可簡便利用專利或論文的資料庫系統,預期明年四月起可供利用。 日本的大學院校去年在國內取得專利權的有三百七十九件,大學將專利技術移轉至民間組織件數在二零零四年度有八百四十九件,藉由技術轉移所得收入為三十三億日圓,雖然這些表現相較於以往年度均有所成長,但日本不論在專利件數或收益上,都與美國相差甚遠,日本政府為了加強國際競爭力,認為有必要加強產、學界的合作,故「二零零六年智慧財產權推動計畫」也規劃,大學院校若有意到海外申請專利權,政府將補助申請費;此外,原本只限定優惠大學正副教授的專利申請費減免措施,也將及於研究所的學生等,以期促進大學內部研發。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
何謂美國專利審查之「Track One程序」?美國專利審查中之所謂「Track One程序」,是指美國在2011年所通過的〈美國發明法〉( Leahy-Smith American Invention Act, AIA)中建立的一套快速審查專利的審查程序。 〈美國發明法〉第11條(h)項中要求,申請人繳交優先審查費用(Prioritized Examination Fee)後,美國專利審查主管機關,美國專利商標局(United States Patent and Trademark Office, USPTO)應提供優先審查服務。因此在Track One程序中,專利申請人僅需要付出4800美元的優先審查費,就可以獲得美國專利商標局的優先審查服務。 在此之前,美國專利商標局也曾經推出過類似的快速審查程序,亦即「加速審查」(Accelerated Examination, AE)程序,但在該加速審查程序中,申請人必須要自行執行對既有技術的檢索,並且提供輔助文件來解釋其請求項在既有技術下之可專利性。而相比之下,申請人在Track One程序中,僅需要負擔4800美金就可以與加速審查程序中相同,在12月內完成審查,且不需要負擔自行檢索技術的義務。也因此在Track One程序推出之後,加速審查程序的申請案件數量也受到影響,日前美國專利商標局即曾經徵詢公眾意見,評估是否仍需保留加速審查之程序。
德國聯邦內政部提出2025年數位政策計畫,加強推動國家行政數位化德國聯邦內政部(Bundesministerium des Innern und für Heimat, BMI)於2022年4月28日公布「數位德國-主權、安全性,及以公民為中心」(Digitales Deutschland – Souverän. Sicher. Bürgerzentriert.)政策文件。BMI作為確保網路與資訊安全,與政府機關數位轉型之聯邦主管機關,在「以公民和企業為數位行政之主要服務對象,並加強國家行政效率」之前提下,規劃2025年前預計達成之目標與具體措施,分述如下: (1)以公民與企業為中心的國家服務數位化:政府應以使用者導向(Nutzerorientierung)作為行政數位化的指導原則,推動簡易、具透明度,且可隨時隨地使用之數位行政服務,包含制定如何提供良好數位化行政服務之指引、調修《網路近用法》(Onlinezugangsgesetz)等。 (2)國家現代化:未來聯邦法律應於立法程序中,確認數位化之可行性,並刪除其中有關書面形式之要求。另應加強聯邦政府內部之系統整合、促進行政工作數位化,並透過訓練計畫讓員工適應數位化環境。 (3)資訊安全架構的現代化:調整德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)職權,強化BSI與資訊技術安全中央辦公室(Zentrale Stelle für Informationstechnik im Sicherheitsbereich, ZITiS)等資安主管機關之數位能力與技能。 (4)資料合法開放與使用:加強行政機關之資料能力與相關分析技能,並以歐盟「資料法案」(Data Act)為法律基礎,為資料品質與資料使用建立標準。 (5)強化數位主權(Digitalen Souveränität)與互通性:為確保國家在數位領域的長期能量,必須加強個人與公部門的數位能力,使其能在數位世界中獨立、自主與安全地發揮作用。與此同時,BMI亦與各邦及聯邦資訊技術合作組織(Föderale IT-Kooperation, FITKO)合作,建立可信賴之標準與介面,並借助開源軟體(Open-Source)、開放介面與開放標準,降低對個別技術供應商之依賴。