InterDigital主張Samsung侵犯其3G專利

  無線技術開發商,美國InterDigital Communications Corp. (InterDigital)表示其已向美國國際貿易委員會(United States International Trade Commission, ITC)提起訴訟案件,控告南韓三星電子(Samsung Electronics Co. Ltd.)與特定關係企業侵犯其3G專利。

 

  InterDigital正向ITC宣告南韓電話製造商三星電子輸入侵犯其三項3G專利權的特定手機和零組件至美國並在當地銷售,進行不公平的貿易交易。

 

  InterDigital也向德拉瓦州的美國地方法院(U.S. District Court)提起告訴,指控三星電子的3G WCDMA手機侵犯其在ITC申訴案件當中所述的專利權。

 

  InterDigital要求ITC下達禁制令(exclusion order),以禁止在其訴訟中所指明之三星電子話機,包含三星電子的BlackJack (由Cingular Wireless所販售)以及模組SGH-ZX20與SGH-A707,進口美國或進一步在美國銷售。

 

  ITC有30天的時間決定是否要調查InterDigital的申訴。通常,ITC委員傾向於12至15個月內完成調查。

 

  William Merritt,InterDigital的董事長暨執行長,表示他們已經與三星電子進行協商,但沒有成功。

 

  顯然,這兩家公司對於InterDigital之主張仍存在有歧見,但是目前三星電子的公司政策傾向於不評論該公司所涉及之訴訟案。

相關連結
※ InterDigital主張Samsung侵犯其3G專利, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1997&no=57&tp=1 (最後瀏覽日:2025/12/20)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

新加坡金融監管局發布金融服務產業轉型藍圖,以提升金融科技創新力

  考量金融服務業面對科技之影響,金融領域必須轉型,以維持競爭力與時並進,新加坡金融監管局於2017年10月30日發布金融服務領域之產業轉型藍圖(Industry Transformation Map),旨於成為一個連結全球市場、支持亞洲發展,以及為新加坡經濟服務之全球金融中心。   該產業轉型藍圖包含了三部分,分別係:商業策略、創新與監理、以及就業與技能。   一、商業策略:成為領先國際財富管理樞紐。為推動亞洲發展,新加坡金管局預計與業界合作,將新加坡發展為私募市場融資平台。   二、創新和監管:發展重點為促進金融領域創新之普及,並鼓勵使用科學技術提升效率與創造機會,其具體方式包括: 透過API應用程式介面,鼓勵金融機構提升創造力和科技創新。 與金融機構合作打造常用的工具,如電子支付、電子身分識別(know-your-client)機制等。 促進和投資研發,開發新的解決方案,包括使用分帳式技術進行銀行間的支付與貿易融資。 擴展與其他Fintech中心之間的跨境合作協議,讓新加坡成為國外Fintech新創企業之育成基地。 使用科學技術,簡化金融機構監管。   三、就業和技能:新加坡金管局將擴大金融服務業的人才庫,加強新入和中期轉換跑道之人員在資訊科技上的專業技能。   該金融服務產業轉型藍圖之目標為,每年在金融領域達到4.3%實際增長值,並創造3,000個工作,其中金融科技領域部分達成1,000個工作機會。

經濟部推動奈米標章,第一個奈米標章即將在今年發出

  市面上強調奈米的產品充斥,舉凡從燈管、面膜、瓷磚等各種產品都宣稱是奈米產品,因此經濟部決定推動奈米標章認證制度。該制度的推行,可讓消費者對奈米產品有更正確的認知和信任,對於鼓勵廠商開發優良奈米產品也有正面影響。   經濟部於今年辦理第一階段的技術初審,共有六家廠商通過,預定十月中旬將要進行第二階段的跨部會複審,只要能通過複審審查,就可以取得奈米標章。   有鑒於 奈米技術工業納入新興重要策略性產業已在日前拍板定案,為避免奈米標章浮濫,而可能造成租稅浮濫,經濟部指出,未來該標章的核發審查將審慎把關,預期僅很少數廠商的奈米技術工業可成為新興產業。

南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引

南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。

TOP