本文為「經濟部產業技術司科技專案成果」
兩年前蘋果選擇開放原始碼成像引擎( rendering engine ) KHTML 做為 Safari 瀏覽器的基礎;兩年後,蘋果則打算以自己的程式碼取代該引擎,藉以解決相容性的問題。 KHTML 成像引擎──也是其瀏覽器的核心,考慮在其架構上放棄 KHTML 的程式庫( code base ),或者所謂的「樹狀圖」( tree ),改用蘋果自己的版本,也就是所謂的 WebCore (網頁核心)。 KHTML 原本是為了要在 KDE ( K Desktop Environment )上執行而撰寫的──這是 Linux 和 Unix 作業系統的介面。 Safari 並不是蘋果唯一以開放原始碼為基礎的軟體,其麥金塔( Macintosh )作業系統就是以達爾文( Darwin )開放原始碼計畫為基礎。 企業在某些方面受到限制,而開放原始碼社群以不受限制為傲。蘋果自己內部有些問題搞不定,以致銜接不上 KDE 開發 KHTML 的模式,導致 KHTML 與 Safari 逐漸產生分歧,後來情況則越來越嚴重。
日本特許法有關職務發明報酬規定之新近發展趨勢企業或機構對於所屬研發人員所為的 職務發明 , 應該給予多少的報償才算「合理」,近年來成為日本專利制度的爭議話題之一,其中 Olympus Optical Co., Ltd. v. Shumpei Tanaka 、 Yonezawa v. Hitachi Co. Ltd. 、 Nakamura v. Nichia Chemical Co Ltd 幾件訴訟案件更受到高度矚目,引發各界對於日本特許法(即專利法)中第 35 條第 3 、 4 項相關規定之檢討與議論,進而促使日本國會於 2004 年 5 月 28 日 通過特許法修正案,並自 2005 年 4 月 1 日 正式生效。 修正後之日本特許法有關受雇人發明制度部分,修正了第 35 條第 3 項及第 4 項並新增第 5 項。第 35 條第 3 項規定,受雇人依據契約、工作規則或其他約定,同意授予雇用人關於受雇人所為發明之專利申請權、專利權或設定專用實施權時,受雇人對於雇用人有收取合理報酬之權。第 35 條第 4 項規定,依據前項所定之契約、工作規則與其他約定,訂有報酬之約定時,在該報酬之決定標準係經由受雇人與雇用人協議為之,該報酬標準係經公開,且受雇人對於計算報酬金額所表達之意見,亦被充分聽取的情形下,依據該約定所為之報酬金給付應被認為是合理的。又同條第 5 項之規定,若企業內部之契約、工作規則與其他約定,並未規定報酬金額,或雖有規定,但該規定之報酬金額被認為是不合理的,則第 3 項所規定之合理報酬金額,應權衡雇用人基於該發明所獲得之利益、所承受之負擔及對該發明所做之貢獻,與受雇人在相關發明中所獲得之利益及其他相關因素加以認定之。 上述修正規定最大的特色在於 :(一)尊重自主協議 ; (二)報酬計算要件更加具體化 ; (三)鼓勵裁判外紛爭解決手段 。新修正之受雇人制度會帶來什麼樣的影響,目前各界仍在觀察;不過可確定的是,相較於舊法,新法至少在計算合理報酬上,要求雇用人須踐行更多的程序及其他要件,而這程序或要件規定將可減少法官在舊法時計算合理報酬金額的沈重負擔,與高度不確定所帶來的風險,並且亦可減少受雇人發明訴訟的總數量。 以日本電子大廠 Toshiba 新近在 7 月底與其離職員工 Fujio Masuoka 就閃光記憶晶片技術( flash memory chip technology )所達成之職務發明報酬和解協議為例, Toshiba 在 7 月 27 日 發布的新聞稿中,即特別感謝東京地方法院對公司有關員工職務發明之報酬政策及看法的尊重。
美國聯邦貿易委員會第一起關於智慧聯網案例之簡介—In the Matter of TrendNet, Inc. 美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。