本文為「經濟部產業技術司科技專案成果」
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
日本國土交通省公布「無人機載運貨物指引2.0」,加快物流無人機應用日本國土交通省(国土交通省)於2021年6月25日公布「無人機載運貨物指引2.0」(ドローンを活用した荷物等配送に関するガイドラインVer.2.0)。2021年3月公布之「無人機載運貨物指引1.0(法令編)」(ドローンを活用した荷物等配送に関するガイドラインVer.1.0(法令編))係針對涉及之相關法令進行彙整,而本次則聚焦於應用方面進行詳細說明。 本指引首先於第一編指出,在引進物流無人機前,業者應先盤點該地區存在的課題,並確認無人機是否能有效解決該問題,接著嘗試提出具體解決方案,如拉長無人機飛行距離、增加使用次數,或建立可多次往返的飛行航道以增加使用頻率等。在初步確立無人機業務藍圖後,業者尚須設定物流無人機服務之目標受眾,並聯繫可提供貨物之商店及無人機業者,著手建立相關服務之運作模式。此外,為順利推動物流無人機服務,還需提高民眾對物流無人機之社會接受度,以獲得當地居民的理解及支持。最後,為確保飛航安全,業者除遵守本指引第二編所列相關法令飛行外,亦應制定安全飛行操作手冊,審慎評估起降地點之安全性,並建立一套安全管理系統。
歐盟執委會發布關於歐洲境內資料流監控之新研究歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。 在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。 該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量 該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。 作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。
歐洲資料保護監管機關研議提出「智慧電表系統發展準備建議」研究報告歐洲資料保護監管機關(European Data Protection Supervisor,以下簡稱EDPS)是一個獨立的監督機關,其任務主要在於監督歐盟個人資料的管理程序、提供影響隱私的政策及法制建議、與其他類似機關合作以確保資料的保護。 EDPS於今(2012)年6月8日,針對歐盟執委會於今(2012)年3月9日發布的「智慧電表系統發展準備建議」(Recommendation on preparations for the roll-out of smart metering systems,以下簡稱準備建議)提出相關意見。「智慧電表系統發展準備建議」乃係針對智慧電表部署之資料安全保護及經濟成本效益評估,提出發展準備建議,供會員國於進行相關建置及制定規範時之參考。然EDPS指出,執委會對於智慧電表中個人資料保護的重視雖值得肯定,但並未在準備建議中提供更具體、全面且實用的指導原則。智慧電表系統雖能帶來顯著的利益,但造成個人資料的大量蒐集,可能導致隱私的外洩,或相關數據遭使用於其他目的。 有鑑於相關風險,EDPS認為在準備建議中,應更加強其資料保護的安全措施,至少應包含對資料控制者在處理個人資料保護評估時有強制的要求;此外,是否有必要進行歐盟層級的立法行動亦應予以評估。EDPS提出的意見主要包括:(1)應提出更多有關選擇資料當事人及處理相關資料的法律依據,例如電表讀取的頻率、是否需取得資料當事人同意;(2)應強制「提升隱私保護技術」(privacy-enhancing technologies)的適用,以限縮資料的使用;(3)從資料保護的角度來釐清參與者的責任;(4)關於保存期間的相關原則,例如對於家戶詳細消費資訊的儲存期間、或在針對帳單處理的情形;(5)消費者能直接近取其能源使用數據,提供有效的方式使資料當事人知悉其資料的處理及揭露,提供有關遠端遙控開關之功能等訊息。